Psychrotolerant Strains of the Genus Trichoderma from Bottom Sediments of Lake Baikal as Promising Biopesticides’ Producers

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Among 54 psychrotolerant strains of 16 species of the genus Trichoderma isolated from the bottom grounds of Lake Baikal 12 strains were selected during sequential screening on solid and liquid media. Finally, 6 strains of the species Trichoderma atroviride, T. gamsii, T. harzianum and Trichoderma sp. were selected. They exhibited inhibitory action towards test-microorganisms Aspergillus niger INA 00760, Bacillus subtilis ATCC6633, Candida albicans ATCC2091 or Escherichia coli ATCC25922 as well as towards strains of phytopathogens Pectobacterium carotovorum VKM-B1247 and Fusarium oxysporum VKPM F-148. Maximum antibiotic activity was established for the culture fluid (CF) and CF concentrate of Trichoderma sp. 2d-4B strain during submerged cultivation against Pectobacterium carotovorum VKM-B1247 and Fusarium oxysporum VKPM F-148. Based on the data of the effective suppression of these phytopathogens and on an assessment of the effect of this strain on the germination of seeds of the monocotyledonous plant Triticum aestivum and the dicotyledonous plant Cucumis sativus and on the length of their sprouts it was shown that the strain Trichoderma sp. 2d-4B can be used to create a biopreparation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Roshka

Gause Institute of New Antibiotics

Хат алмасуға жауапты Автор.
Email: roshkajulia@gmail.com
Ресей, Moscow

A. Kurakov

Moscow State University

Email: kurakov57@mail.ru

кафедра микологии и альгологии, Биологический факультет

Ресей, Moscow

M. Fedorova

Moscow State University

Email: kurakov57@mail.ru

кафедра микологии и альгологии, Биологический факультет

Ресей, Moscow

V. Sadykova

Gause Institute of New Antibiotics

Email: sadykova_09@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Al-Surhanee A. A. Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi J. Biol. Sci. 2022. V. 29 (4). P. 2933–2941. https://doi.org/10.1016/j.sjbs.2022.01.020
  2. Babich O., Shevchenko M., Ivanova S. et al. Antimicrobial potential of microorganisms isolated from the bottom sediments of lake Baikal. Antibiotics (Basel). 2021. V. 10 (8). P. 927. https://doi.org/10.3390/antibiotics10080927
  3. Bashenkhaeva M., Yeletskaya Y., Tomberg I. et al. Free-living and particle-associated microbial communities of lake Baikal differ by season and nutrient intake. Diversity. 2023. V. 15 (4). P. 572. https://doi.org/10.3390/d15040572
  4. BLAST – Basic Local Alignment Search Tool. 2025. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed 02.02.2025.
  5. Czajkowski R., Kaczyńska N., Jafra S. et al. Temperature-responsive genetic loci in pectinolytic plant pathogenic Dickeya solani. Plant Pathol. 2017. V. 66 (4). P. 584–594. https://doi.org/10.1111/ppa.12618
  6. De Hoog G. S., Guarro J., Gené J., et al. Atlas of clinical fungi. CBS-KNAW, Fungal Biodiversity Centre, 3rd edn. Utrecht, 2011.
  7. Domsch K. H., Gams W., Anderson T.-H. Compendium of soil fungi. IHW-Verlag et Verlagsbuchhandlung, 2nd edn. Eching, 2001.
  8. Dutta P., Mahanta M., Singh S. B. et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front. Plant. Sci. 2023. V. 14. Art. 1145715. https://doi.org/10.3389/fpls.2023.1145715
  9. Egorov N. S. Fundamentals of the doctrine of antibiotics. Nauka, Moscow, 2004. (In Russ.).
  10. Ephytia, INRAE portal. 2025. Pectobacterium carotovorum subsp. carotovorum (Jones 1901) Hauben et al. (1999). https://ephytia.inra.fr/en/C/27040/Eggplant-Pectobacterium-carotovorum. Accessed 20.05.2025.
  11. Fedorova M. D., Kurakov A. V. Microbiota of bottom sediments in the coastal zone of lake Baikal. Contemp. Probl. Ecol. 2023. V. 16. P. 492–508. https://doi.org/10.1134/S1995425523040030
  12. Fontana D. C., de Paula S., Torres A. G. et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens. 2021. V. 10 (5). P. 570. https://doi.org/10.3390/pathogens10050570
  13. Furhan J. Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview. J. Genet. Eng. Biotechnol. 2020. V. 18 (1). P. 36. https://doi.org/10.1186/s43141-020-00053-7
  14. Galachyants A. D., Krasnopeev A. Y., Podlesnaya G. V. et al. Diversity of aerobic anoxygenic phototrophs and rhodopsin-containing bacteria in the surface microlayer, water column and epilithic biofilms of lake Baikal. Microorganisms. 2021. V. 9 (4). P. 842. https://doi.org/10.3390/microorganisms9040842
  15. GenBank. 2025. https://www.ncbi.nlm.nih.gov/genbank. Accessed 12.02.2025.
  16. Goyer C., Ullrich M. S. Identification of low-temperature-regulated genes in the fire blight pathogen Erwinia amylovora. Can. J. Microbiol. 2006. V. 52 (5). P. 468–475. https://doi.org/10.1139/w05-153
  17. GOST 12038-84. Agricultural seeds. Methods for determination of germination. 1984. (In Russ.).
  18. GOST 33777-2016. Surface active agent. Method for the determination of phytotoxicity on seeds of higher plants. 2016. (In Russ.).
  19. Hagestad O. C., Andersen J. H., Altermark B. et al. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology. 2020. V. 11 (3). P. 230–242. https://doi.org/10.1080/21501203.2019.1708492
  20. Hassan N., Rafiq M., Hayat M. et al. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev. Environ. Sci. Biotechnol. 2016. V. 15 (2). P. 147–172. https://doi.org/10.1007/s11157-016-9395-9
  21. Hitora Y., Sejiyama A., Honda K. et al. Fluorescent image-based high-content screening of extracts of natural resources for cell cycle inhibitors and identification of a new sesquiterpene quinone from the sponge, Dactylospongia metachromia. Bioorg. Med. Chem. 2021. V. 31. Art. 115968. https://doi.org/10.1016/j.bmc.2020.115968
  22. Ibrar M., Ullah M. W., Manan S. et al. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2777–2801. https://doi.org/10.1007/s00253-020-10399-0
  23. Index Fungorum. 2025. http://www.indexfungorum.org/Names/Names.asp. Accessed 20.03.2025.
  24. Khuong N. Q., Nhien D. B., Thu L. T.M. et al. Using Trichoderma asperellum to Antagonize Lasiodiplodia theobromae Causing Stem-End Rot Disease on Pomelo (Citrus maxima). J. Fungi. 2023. V. 9 (10). P. 981. https://doi.org/10.3390/jof9100981
  25. Krasnopeev A. Y., Ziemens E. A., Sukhanova E. V. et al. Bacterial community seasonal dynamics in lake Baikal littoral zone. Microbiology. 2024. V. 93 (Suppl 1). P. 40–44. https://doi.org/10.1134/S0026261724609151
  26. Kulikova N. N., Suturin A. N., Boyko S. M. et al. The role of water lichens in the biogeochemical processes in the lake Baikal stony littoral. Inland Water Biol. 2009. V. 2 (2). P. 144–148.
  27. Kurakov A. V., Fedorova M. D. Mycobiota of bottom sediments of lake Baikal. In: T. K. Antal, E. A. Bonch-Osmolovskaya, N. V. Pimenov (eds). Proceedings of the III Russian Microbiological Congress. Pskov, 2023, pp. 214–215.
  28. Kuznetsov E. A. Fungi of aquatic ecosystems. Dr. Sci. Thesis. Moscow, 2003. (In Russ.).
  29. Lanham P. G., Mcllravey K. I., Perombelon M. C.M. Production of cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27° and 30.5°. J. Appl. Microbiol. 1991. V. 70 (1). P. 20–24. https://doi.org/10.1111/j.1365-2672.1991.tb03781.x
  30. Mincheva E. V., Peretolchina T. E., Kravtsova L. S. et al. Hidden diversity of microeukaryotes in lake Baikal: a metagenomic approach. Limnol. Freshwater Biol. 2019. V. 1. P. 150–154. https://doi.org/10.31951/2658-3518-2019-A-1-150
  31. Ogaki M. B., Coelho L. C., Vieira R. et al. Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles. 2020. V. 24 (2). P. 227–238. https://doi.org/10.1007/s00792-019-01148-x
  32. Ogaki M. B., Teixeira D. R., Vieira R. et al. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol. 2020. V. 124 (6). P. 601–611. https://doi.org/10.1016/j.funbio.2020.02.015
  33. Palafox-Leal N.L., Castillo Batista J. Ch., Santos-Cervantes M.E. et al. Pectobacterium punjabense causing soft rot and blackleg of potato in Sinaloa, Mexico. Eur. J. Plant. Pathol. 2024. V. 168. P. 29–37. https://doi.org/10.1007/s10658-023-02725-9
  34. Pandey A., Dhakar K., Jain R. et al. Cold adapted fungi from Indian Himalaya: untapped source for bioprospecting. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2019. V. 89 (4). P. 1125–1132. https://doi.org/10.1007/s40011-018-1002-0
  35. Polyakova M. S., Mincheva Е. V., Pudovkina Т.А et al. The first data on fungi and fungus-like organisms in Lake Baikal. Limnol. Freshwater Biol. 2020. V. 3 (4). P. 741–742. https://doi.org/10.31951/2658-3518-2020-a-4-741
  36. Rabosky D. L. Evolutionary time and species diversity in aquatic ecosystems worldwide. Biol. Rev. 2022. V. 97 (6). P. 2090–2105. https://doi.org/10.1111/brv.12884
  37. Rifai M. A. A revision on the genus Trichoderma. Mycol. Pap. 1969. V. 116. P. 1–56.
  38. Rojo F. G., Reynoso M. M., Ferez M. et al. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under feld conditions. Crop. Prot. 2007. V. 26 (4). P. 549–555. https://doi.org/10.1016/j.cropro.2006.05.006
  39. Roshka Yu. A., Markelova N. N., Mashkova S. D. et al. Antimicrobial Potential of Secalonic Acids from Arctic-Derived Penicillium chrysogenum INA 01369. Antibiotics. 2025. V. 14 (88). https://doi.org/10.3390/antibiotics14010088
  40. Senthil-Nathan S. A Review of biopesticides and their mode of action against insect pests. In: Thangavel P., Sridevi G. (eds). Environmental Sustainability. Springer, New Delhi, 2015, pp. 49–63.
  41. Sharma A., Gupta B., Verm S. et al. Unveiling the biocontrol potential of Trichoderma. Eur. J. Plant. Pathol. 2023. V. 167. P. 569–591. https://doi.org/10.1007/s10658-023-02745-5
  42. Smadja B., Latour X., Trigui S. et al. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can. J. Microbiol. 2004. V. 50 (1). P. 19–27. https://doi.org/10.1139/w03-099
  43. Smirnova A., Li H., Weingart H. et al. Thermoregulated expression of virulence factors in plant-associated bacteria. Arch. Microbiol. 2001. V. 176 (6). P. 393–399. https://doi.org/10.1007/s002030100344
  44. Sonkar S. S., Bhatt J., Meher J. et al. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J. Pharmacogn. Phytochem. 2018. V. 7 (6). P. 2010–2014.
  45. Sparks T.C, Sparks J.M, Duke S. O. Natural product-based crop protection compounds – origins and future prospects. J. Agric. Food. Chem. 2023. V. 71 (5). P. 2259–2269. https://doi.org/10.1021/acs.jafc.2c06938
  46. Ullrich M. S., Schergaut M., Boch J. et al. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. Microbiology. 2000. V. 146 (10). P. 2457–2468. https://doi.org/10.1099/00221287-146-10-2457
  47. Yi Z., Berney C., Hartikainen H. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 2017. V. 93 (8). https://doi.org/10.1093/femsec/fix073
  48. Zemskaya T. I., Cabello-Yeves P. J., Pavlova O. N. et al. Microorganisms of Lake Baikal – the deepest and most ancient lake on Earth. Appl. Microbiol. Biotechnol. 2020. V. 104. P. 6079–6090. https://doi.org/10.1007/s00253020-10660-6
  49. Zenteno-Alegría C.O., Yarzábal Rodríguez L. A., Ciancas Jiménez J. et al. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol. 2024. V. 17 (3). e14439. https://doi.org/10.1111/1751-7915.14439
  50. Zhan X., Wang R., Zhang M. et al. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. Pest. Manag. Sci. 2024. V. 80. P. 1039–1052. https://doi.org/10.1002/ps.7835
  51. ГОСТ 12038-84. (GOST) Семена сельскохозяйственных культур. Методы определения всхожести. М., 1984.
  52. ГОСТ 33777-2016. (GOST) Поверхностно-активные вещества. Метод определения фитотоксичности на семенах высших растений. М., 2016.
  53. Егоров Н. С. (Egorov) Основы учения об антибиотиках. М.: Наука, 2004. 450 с.
  54. Кузнецов Е. А. (Kuznetsov) Грибы водных экосистем. Дисс. … докт. биол. наук. М.: МГУ, 2003. 865 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Seeds of cucumber Cucumis sativus (variety Garmonist F1, Agrofirma Gavrish) and soft wheat Triticum aestivum after soaking in the test solutions: A and B – cucumber seeds on the first and third days after soaking, respectively; B – wheat seeds on the third day after soaking.

Жүктеу (72KB)

© Russian Academy of Sciences, 2025