Nanoporosity of polymer membranes and corresponding powder materials on the bases of gas sorption results and positron annihilation experiments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Variations of nanoporosity obtained on casting of membranes from the original highly dispersed polyphenylene oxides (PPO) of various crystallinity (from 0 to 69.2%) on the bases of the data, obtained by the methods of positron annihilation and low temperature gas (N2, CO₂) sorption, are discussed. The notion of nanoporosity includes microporosity and mesoporosity of the materials with pore sizes from some Å up to several tens of nanometers. A combination of the results of positron annihilation and sorption measurements with oxygen permeation data for the created membranes allow to conclude that, on transition from powder to solid membrane, microporosity is mostly stays unhanged while mesoporosity essentially transforms.

Full Text

Restricted Access

About the authors

V. P. Shantarovich

Smenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: shant@chph.ras.ru
Russian Federation, Moscow

V. G. Bekeshev

Smenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: shant@chph.ras.ru
Russian Federation, Moscow

I. B. Kevdina

Smenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: shant@chph.ras.ru
Russian Federation, Moscow

A. Yu. Alentiev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: shant@chph.ras.ru
Russian Federation, Moscow

References

  1. Mogensen O.E. Positron Annihilation in Chemistry / Eds. Goldanskii V.I., Schaeffer E.P. Berlin–Heidelberg–New York: Springer-Verlag, 1995.
  2. Budd P.M., McKeown N.B., Fritsch D., Yampolskii Yu.P., Shantarovich V.P. // Membrane Gas Separation / Eds. Yampolskii Yu.P., Freeman B. 2010. P. 29.
  3. Weber M.H., Lynn K.G. // Principles and Applications of Positron and Positronium Chemistry / Eds. Jean Y.C., Mallon P.E., Schrader D.M. New Jersey – London – Singapore – Hong Kong: World Scientific, 2003. P. 167.
  4. Shantarovich V.P. // J. Polym. Sci. Part B: Polym. Phys. 2008. V. 46. P. 2485. https://doi.org/10.1002/polb.21602
  5. Consolati G., Nichetti D., Quasso E. // Polymers. 2023. V. 15. P. 3128. https://doi.org/10.3390/polym15143128
  6. Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309.
  7. Brunauer S., Emmett P.H. // Ibid. 1935. № 7. P. 1754.
  8. IUPAC Reporting physisorption data for gas/solid systems // Pure & Appl. Chem. 1985. V. 57. № 4. P. 603.
  9. Brunauer S., Deming L.S., Deming W.S. et al. // J. Amer. Chem. Soc. 1940. V. 62. P. 1723.
  10. Shantarovich V.P., Bekeshev V.G., Kevdina I.B., Gustov V.V., Belousova E.V. // High Energy Chemistry. 2023. V. 57. № 4. P. 260. https://doi.org/10.31857/S0023119323040137
  11. NOVAWIN2 V.2.1. Operating Manual. Great Britain: Quantachrome Instruments, 2004.
  12. Alentiev A.Yu., Levin I.S., Buzin V.I. et al. // Polymer. 2021. V. 226. 123804. https://doi.org/10.1016/j.polymer.2021.123804
  13. Alentiev A.Yu., Levin I.S., Belov N.A. et al. // Polymers. 2022. V. 14. № 1. Article 120. https://doi.org/10.3390/polym14010120
  14. Alentiev A.Yu., Chirkov S.V., Nikiforov R.Yu. et al. // Membranes and Membrane Technologies. 2022. V. 12. № 1. P. 3. https://doi.org/10.1134/S2218117222010035
  15. Kirkegaard P., Pederson N.J., Eldrup M. PATFIT-88: A data processing system for positron annihilation spectra on the mainframe and personal computers, Risoe-M-2740, Risoe National Laboratory, DK-4000, Roskilde, Denmark, 1989.
  16. Taon S.J. // J. Chem. Phys. 1972. V. 56. P. 5499.
  17. Eldrup V., Lightbody D., Sherwood J.N. // Chem. Phys. 1981. V. 63. P. 51. https://doi.org/10.1016/0301-0104(81)80307-2
  18. Song T., Zhang P., Zhang C. et al. // Macropor. Mesopor. Mater. 2022. V. 334. 111761. http://doi.org/10.1016/j.micromeso.2022.111761
  19. Elmehalmey W.A., Azzam R.A., Hassan Y.S. et al. // ACS Omega. 2018. V. 3. P. 2757. http://doi.org/10.1021/acsomega.7b02080
  20. Gun’ko V.M., Laboda R., Skubishevska-Zieba J., Gawdzik B., Charmas B. // Appl. Surf. Sci. 2005. V. 252. № 3. P. 612. http://doi.org/10.1016/j.apsusc.2005.02075
  21. Zaleski R., Kierys A., Dziadosz M. et al. // RSC Adv. 2012. V. 2. P. 3729.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isotherms of CO₂ adsorption by polyphenylene oxide PPO membranes.

Download (30KB)
3. Fig. 2. CO₂ adsorption isotherms for PPO powders used in casting the corresponding membranes.

Download (34KB)
4. Fig. 3. Isotherms of N₂ adsorption (dark symbols) and desorption (light symbols) at 77 K in the initial PPO powders.

Download (45KB)
5. Fig. 4. Pore size distribution for the PPO-4 sample (PPO-500, powder), calculated from the sorption curve using the DFT model for nitrogen adsorbate N₂ at 77 K. The peaks correspond to pore diameters of 1.5, 3.0, and 7.8 nm.

Download (19KB)

Copyright (c) 2025 Russian Academy of Sciences