Излучательная способность элементов подгруппы скандия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты экспериментального исследования нормальной интегральной излучательной способности металлов подгруппы скандия: скандий, иттрий и лантан в широком интервале температур твердое тело–жидкость, включая фазовый переход. Исследование обусловлено отсутствием данных по нормальной интегральной излучательной способности металлов в периодических и справочных изданиях. Интерес к исследуемым металлам также связан с уникальными физико-химическими свойствами, которые делают их перспективными для применения в высокотемпературных системах. Авторы статьи интерпретируют представленные данные как полученные впервые, и они носят предварительный характер, требующий уточнения. Метод измерения – радиационный, способ нагрева образцов – резистивный. Погрешность эксперимента ± 3–5%. Измерения твердой фазы металлов проводились в вакууме, жидкая фаза исследовалась в атмосфере специально подготовленного газа – аргона. Представлены графические иллюстрации и численные значения результатов по каждому из исследованных металлов. Полученные комплексные данные по нормальной интегральной излучательной способности в пределах каждой из фаз состояния металлов монотонно возрастают. Такое поведение нормальной интегральной излучательной способности связывается со структурными изменениями в кристаллических решетках вследствие роста температуры. В области фазового перехода твердое тело–жидкость обнаружен скачок нормальной интегральной излучательной способности по каждому из исследованных металлов. В этом случае скачок связан с резким ростом свободных электронов при перестройке структуры металла вследствие плавления, а величина скачка в процентном отношении к твердой фазе у каждого металла индивидуальна. Все результаты исследования проанализированы и обсуждены. Проведено численное моделирование по классической электромагнитной теории с использованием приближения Фута, результаты которого сопоставлены с экспериментальными значениями. Сделан вывод о том, что теоретический расчет излучательной способности качественно, но не количественно, позволяет описать поведение излучательной способности металлов при условии, что известны значения удельного электрического сопротивления металлов в заданном температурном диапазоне.

Полный текст

Доступ закрыт

Об авторах

Д. В. Косенков

Казанский национальный исследовательский технологический университет

Автор, ответственный за переписку.
Email: dmi-kosenkov@yandex.ru
Россия, Казань

В. В. Сагадеев

Казанский национальный исследовательский технологический университет

Email: dmi-kosenkov@yandex.ru
Россия, Казань

Список литературы

  1. Siegel R., Howell J.R. Thermal Radiation Heat Transfer. NY.: Taylor & Francis. 2010.
  2. Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением. М.: Энергоатомиздат. 1991.
  3. Michael F. Modest. Radiative heat transfer. NY.: McGraw-Hill. 1993.
  4. Anhalt K., Mariacarla A., Jochen M. and etc. Measuring spectral emissivity up to 4000 K // High temperatures-high pressures. 2024. 53. № 3. P. 255–270. https://doi.org/10.32908/hthp.v53.1619
  5. Eber A., Pichler P., Pottlacher G. Re-investigation of the normal spectral emissivity at 684,5 nm of solid and liquid molybdenum // Int. J. Thermophys. 2021. 42. № 17. P. 7.
  6. Fukuyama H., Higashi H., Yamano H. Normal spectral emissivity, specific heat capacity, and thermal conductivity of type 316 austenitic stainless steel containing up to 10 mass % B4C in a liquid state // Journal of Nuclear Materials. 2022. 568. № 5. Р. 12.
  7. Adachi M., Yamagata Y., Watanabe M. and etc. Composition dependence of normal spectral emissivity of liquid Ni – Al alloys // ISIJ International. 2021. 61. № 3. P. 684–689.
  8. Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity, hemispherical total emissivity and constant pressure heat capacity of liquid vanadium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2021. 163. 106598. P. 7.
  9. Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity and constant pressure heat capacity of liquid titanium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2019. 131. P. 557–562.
  10. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
  11. Регель А.Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978.
  12. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.: Металлургия, 1991.
  13. Михайличенко А.И., Михлин Е.Б., Патрикеев Ю.Б. Редкоземельные металлы. М.: Металлургия, 1987.
  14. Yellapu V. Murty, Mary Anne Alvin, Jack P. Lifton. Rare earth metals and minerals industries: status and prospects. Cham: Springer, 2024.
  15. Косенков Д.В., Сагадеев В.В., Аляев В.А. Степень черноты ряда металлов VIII группы периодической системы // Теплофизика и аэромеханика. 2021. 28. № 6. С. 951–956.
  16. Косенков Д.В., Сагадеев В.В. Исследование излучательной способности циркония и гафния в широком диапазоне температур // Журнал технической физики. 2024. 24. № 8. С. 1356–1361.
  17. Косенков Д.В., Сагадеев В.В. Зависимость нормальной интегральной излучательной способности группы щелочных металлов от температуры // Теплофизика и аэромеханика. 2024. 31. № 4. С. 817–825.
  18. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат. 1991.
  19. Физическое металловедение. Том 1: Атомное строение металлов и сплавов / Под ред. Кана Р.У., Хаазена П. М.: Металлургия, 1987.
  20. Mardon P.G., Nichols J.L., Pearce J.H. and etc. Some Properties of Scandium Metal // Nature. 1961. 189. P. 566 – 568.
  21. Kammler D.R., Rodriguez M.A., Tissot R.G. and etc. In situ time of flight neutron diffraction study of high-temperature α-to-β phase transition in elemental scandium // Metallurgical and materials transactions A. 2008. 39. № 12. P. 2815 – 2819.
  22. Зиновьев В.Е. Кинетические свойства металлов при высоких температурах. М.: Металлургия. 1984.
  23. Излучательные свойства твердых материалов / Под ред. А.Е. Шейндлина. М.: Энергия. 1974.
  24. Takamichi I., Roderick I.L. Guthrie. The thermophysical properties of metallic liquids. Vol. 2: Predictive models. Oxford: Oxford University Press. 2015.
  25. Савицкий Е.М., Терехова В.Ф., Наумкин О.П. Физико-химические свойства редкоземельных металлов, скандия и иттрия // Успехи физических наук. 1963. 79. № 2. С. 263–293.
  26. Ishikawa T., Watanabe Y., Koyama C. and etc. Constant pressure heat capacity of molten yttrium measured by an electrostatic levitator // In. Journal of Microgravity Science and Application. 2023. 40. № 2. P.11.
  27. Ивлиев А.Д. Электрическое сопротивление редкоземельных металлов и их сплавов при высоких температурах: роль магнитного рассеяния // Физика твердого тела. 2020. 62. № 10. С. 1587–1593.
  28. Григорович В.К. Металлическая связь и структура металлов. М.: Наука, 1988.
  29. Spedding F.H., Daane A.H., Herrmann K.W Electrical resistivities and phase transformations of lanthanum, cerium, praseodymium and neodymium // JOM. 1957. 9. P. 895 – 897.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость εtn скандия от температуры: ● – измерения авторов; штриховая линия и ○ – результат вычислительного эксперимента.

Скачать (91KB)
3. Рис. 2. Зависимость εtn иттрия от температуры: ● – измерения авторов; ∆ – измерения [25] штриховая линия, □ и ○ – результат вычислительного эксперимента.

Скачать (92KB)
4. Рис. 3. Зависимость εtn лантана от температуры: ● – измерения авторов; штриховая и штрихпунктирная линии – результат вычислительного эксперимента.

Скачать (90KB)

© Российская академия наук, 2025