Activation of bacterial F-ATPase by LDAO: deciphering the molecular mechanism

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Proton FOF1-ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate coupled with transmembrane proton transfer using the energy of the proton motive force (pmf). As pmf falls, the direction of the reaction is reversed and the enzyme generates pmf, transferring protons across the membrane using the energy of ATP hydrolysis. The ATPase activity of the enzyme can be suppressed by ADP in a non-competitive manner (ADP-inhibition), and in a number of bacteria can be inhibited by the conformational changes of subunit ε regulatory C-terminal domain. Lauryldimethylamine oxide (LDAO), a zwitterionic detergent, is known to attenuate both aforementioned inhibitory mechanisms, stimulating a significant increase in the enzyme's ATPase activity. For this reason, LDAO is sometimes used for the semi-quantitative estimation of these regulatory mechanisms. However, the binding site of LDAO on ATP synthase remains unknown. The mechanism by which the detergent counteracts ADP-inhibition and inhibition by the ε subunit is also unclear. We performed molecular docking and predicted that LDAO binding might occur at the catalytic sites of ATP synthase, whether empty or containing nucleotides. Molecular dynamics simulations showed that LDAO could affect the mobility of a loop in the β subunit (residues β404-415 in Escherichia coli ATP synthase) near the catalytic site. Mutagenesis of the β409 residue in E. coli enzyme and the corresponding β419 residue in Bacillus subtilis ATP synthase revealed that the side chain type of this residue indeed affects LDAO-dependent stimulation of ATPase activity. We also found that LDAO activates the enzyme more strongly in the presence of 100 mM sulfate compared to sulfate-free media. This phenomenon is likely due to the enhancement of ADP-inhibition of the enzyme by sulfate.

全文:

受限制的访问

作者简介

S. Bruman

Lomonosov Moscow State University

Email: feniouk@belozersky.msu.ru

Faculty of Bioengineering and Bioinformatics

俄罗斯联邦, 119234 Moscow

V. Zubareva

Lomonosov Moscow State University; Lomonosov Moscow State University

Email: feniouk@belozersky.msu.ru

Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physico-Chemical Biology

俄罗斯联邦, 119234 Moscow; 119992 Moscow

T. Shugaeva

Lomonosov Moscow State University

Email: feniouk@belozersky.msu.ru

Faculty of Bioengineering and Bioinformatics

俄罗斯联邦, 119234 Moscow

A. Lapashina

Lomonosov Moscow State University; Lomonosov Moscow State University

Email: feniouk@belozersky.msu.ru

Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physico-Chemical Biology

俄罗斯联邦, 119234 Moscow; 119992 Moscow

B. Feniouk

Lomonosov Moscow State University; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: feniouk@belozersky.msu.ru

Faculty of Bioengineering and Bioinformatics, Belozersky Institute of Physico-Chemical Biology

俄罗斯联邦, 119234 Moscow; 119992 Moscow

参考

  1. Zubareva, V. M., Lapashina, A. S., Shugaeva, T. E., Litvin, A. V., and Feniouk, B. A. (2020) Rotary ion-translocating ATPases/ATP synthases: diversity, similarities, and differences, Biochemistry (Moscow), 85, 1613-1630, doi: 10.1134/S0006297920120135.
  2. Stewart, A. G., Laming, E. M., Sobti, M., and Stock, D. (2014) Rotary ATPases – dynamic molecular machines, Curr. Opin. Struct. Biol., 25, 40-48, doi: 10.1016/j.sbi.2013.11.013.
  3. Watanabe, R. (2013) Rotary catalysis of FOF1-ATP synthase, Biophysics, 9, 51-56, doi: 10.2142/biophysics.9.51.
  4. Junge, W., and Nelson, N. (2015) ATP synthase, Annu. Rev. Biochem., 84, 631-657, doi: 10.1146/annurev-biochem-060614-034124.
  5. Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, Biochem. Soc. Transact., 41, 1-16, doi: 10.1042/BST20110773.
  6. Feniouk, B. A., and Yoshida, M. (2008) Regulatory mechanisms of proton-translocating FOF1-ATP synthase, Results Problem Cell Differ., 45, 279-308, doi: 10.1007/400_2007_043.
  7. Lapashina, A. S., and Feniouk, B. A. (2018) ADP-inhibition of H+-FOF1-ATP synthase, Biochemistry (Moscow), 83, 1141-60, doi: 10.1134/S0006297918100012.
  8. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase, Biochim. Biophys. Acta, 1757, 326-338, doi: 10.1016/j.bbabio.2006.03.022.
  9. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2007) How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria, Proc. Natl. Acad. Sci. USA, 104, 15671-15676, doi: 10.1073/pnas.0707326104.
  10. Lötscher, H. R., deJong, C., and Capaldi, R. A. (1984) Interconversion of high and low adenosinetriphosphatase activity forms of Escherichia coli F1 by the detergent lauryldimethylamine oxide, Biochemistry, 23, 4140-4143, doi: 10.1021/bi00313a020.
  11. Dunn, S. D., Tozer, R. G., and Zadorozny, V. D. (1990) Activation of Escherichia coli F1-ATPase by lauryldimethylamine oxide and ethylene glycol: relationship of ATPase activity to the interaction of the epsilon and beta subunits, Biochemistry, 29, 4335-4340, doi: 10.1021/bi00470a011.
  12. Peskova, Y. B., and Nakamoto, R. K. (2000) Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state, Biochemistry, 39, 11830-11836, doi: 10.1021/bi0013694.
  13. Paik, S. R., Yokoyama, K., Yoshida, M., Ohta, T., Kagawa, Y., and Allison, W. S. (1993) The TF1-ATPase and ATPase activities of assembled α3β3, α3β3δ, and α3β3ε complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the α3β3, and α3β3δ complexes, J. Bioenerg. Biomembr., 25, 679-684, doi: 10.1007/BF00770254.
  14. Paik, S. R., Jault, J.-M., and Allison, W. S. (1994) Inhibition and inactivation of the F1 adenosinetriphosphatase from Bacillus PS3 by dequalinum and activation of the enzyme by lauryl dimethylamine oxide, Biochemistry, 33, 126-133, doi: 10.1021/bi00167a016.
  15. Jault, J. M., Matsui, T., Jault, F. M., Kaibara, C., Muneyuki, E., et al. (1995) The alpha3beta3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites, Biochemistry, 34, 16412-16418, doi: 10.1021/bi00050a023.
  16. Montero-Lomeli, M., and Dreyfus, G. (1987) Activation of Mg-ATP hydrolysis in isolated Rhodospirillum rubrum H+-ATPase, Arch. Biochem. Biophys., 257, 345-351, doi: 10.1016/0003-9861(87)90575-3.
  17. Jault, J.-M., Dou, C., Grodsky, N. B., Matsui, T., Yoshida, M., and Allison, W. S. (1996) The α3β3 subcomplex of the F1-ATPase from the Thermophilic bacillus PS3 with the βT165S substitution does not entrap inhibitory MgADP in a catalytic site during turnover, J. Biol. Chem., 271, 28818-28824, doi: 10.1074/jbc.271.46.28818.
  18. Hirono-Hara, Y., Noji, H., Nishiura, M., Muneyuki, E., Hara, K. Y., Yasuda, R., et al. (2001) Pause and rotation of F1-ATPase during catalysis, Proc. Natl. Acad. Sci. USA, 98, 13649-13654, doi: 10.1073/pnas.241365698.
  19. Lapashina, A. S., Kashko, N. D., Zubareva, V. M., Galkina, K. V., Markova, O. V., Knorre, D. A., Feniouk, B. A. (2022) Attenuated ADP-inhibition of FOF1 ATPase mitigates manifestations of mitochondrial dysfunction in yeast, Biochim. Biophys. Acta Bioenerg., 1863, 148544, doi: 10.1016/j.bbabio.2022.148544.
  20. Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Computat. Chem., 31, 455-461, doi: 10.1002/jcc.21334.
  21. Guo, H., Suzuki, T., and Rubinstein, J. L. (2019) Structure of a bacterial ATP synthase, eLife, 8, e43128, doi: 10.7554/eLife.43128.
  22. Ferguson, S. A., Cook, G. M., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2016) Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum, Proc. Natl. Acad. Sci. USA, 113, 10860-10865, doi: 10.1073/pnas.1612035113.
  23. Hahn, A., Vonck, J., Mills, D. J., Meier, T., and Kühlbrandt, W. (2018) Structure, mechanism, and regulation of the chloroplast ATP synthase, Science, 360, eaat4318, doi: 10.1126/science.aat4318.
  24. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000) The structure of the central stalk in bovine F1-ATPase at 2.4 A resolution, Nat. Struct. Biol., 7, 1055-1061, doi: 10.1038/80981.
  25. Korb, O., Stützle, T., and Exner, T. E. (2009) Empirical scoring functions for advanced protein-ligand docking with plants, J. Chem. Inform. Model., 49, 84-96, doi: 10.1021/ci800298z.
  26. Doerr, S., Harvey, M. J., Noé, F., and De Fabritiis, G. (2016) HTMD: high-throughput molecular dynamics for molecular discovery, J. Chem. Theory Computat., 12, 1845-1852, doi: 10.1021/acs.jctc.6b00049.
  27. Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., et al. (2020) ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution, J. Chem. Theory Computat., 16, 528-552, doi: 10.1021/acs.jctc.9b00591.
  28. Andrio, P., Hospital, A., Conejero, J., Jordá, L., Del Pino, M., Codo, L., et al. (2019) BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows, Sci. Data, 6, 169, doi: 10.1038/s41597-019-0177-4.
  29. Sousa da Silva, A. W., and Vranken, W. F. (2012) ACPYPE – AnteChamber PYthon Parser interface, BMC Res. Notes, 5, 367, doi: 10.1186/1756-0500-5-367.
  30. Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner, N., et al. (2015) PyEMMA 2: a software package for estimation, validation, and analysis of Markov models, J. Chem. Theory Computat., 11, 5525-5542, doi: 10.1021/acs.jctc.5b00743.
  31. Schrödinger, L., and DeLano, W. (2020) PyMOL, URL: http://www.pymol.org/pymol.
  32. Lapashina, A. S., Prikhodko, A. S., Shugaeva, T. E., and Feniouk, B. A. (2019) Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase, Biochim. Biophys. Acta Bioenerg., 1860, 181-188, doi: 10.1016/j.bbabio.2018.12.003.
  33. Ishmukhametov, R. R., Galkin, M. A., and Vik, S. B. (2005) Ultrafast purification and reconstitution of His-tagged cysteine-less Escherichia coli F1Fo ATP synthase, Biochim. Biophys. Acta, 1706, 110-116, doi: 10.1016/j.bbabio.2004.09.012.
  34. Suzuki, T., Ozaki, Y., Sone, N., Feniouk, B. A., and Yoshida, M. (2007) The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly, Proc. Natl. Acad. Sci. USA, 104, 20776-20781, doi: 10.1073/pnas.0708075105.
  35. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2007) Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase, J. Biol. Chem., 282, 764-772, doi: 10.1074/jbc.M606321200.
  36. Doerr, S., and De Fabritiis, G. (2014) On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations, J. Chem. Theory Computat., 10, 2064-2069, doi: 10.1021/ct400919u.
  37. Hruska, E., Abella, J. R., Nüske, F., Kavraki, L. E., and Clementi, C. (2018) Quantitative comparison of adaptive sampling methods for protein dynamics, J. Chem. Phys., 149, 244119, doi: 10.1063/1.5053582.
  38. Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., et al. (2011) Markov models of molecular kinetics: generation and validation, J. Chem. Phys., 134, 174105, doi: 10.1063/1.3565032.
  39. Mizumoto, J., Kikuchi, Y., Nakanishi, Y.-H., Mouri, N., Cai, A., Ohta, T., et al. (2013) ε subunit of Bacillus subtilis F1-ATPase relieves MgADP inhibition, PLoS One, 8, e73888, doi: 10.1371/journal.pone.0073888.
  40. Sternweis, P. C., and Smith, J. B. (1980) Characterization of the inhibitory (ε) subunit of the proton-translocating adenosine triphosphatase from Escherichia coli, Biochemistry, 19, 526-531, doi: 10.1021/bi00544a021.
  41. Fischer, S., Graber, P., and Turina, P. (2000) The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force, J. Biol. Chem., 275, 30157-30162, doi: 10.1074/jbc.M004135200.
  42. Vasilyeva, E. A., Minkov, I. B., Fitin, A. F., and Vinogradov, A. D. (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite, Biochem. J., 202, 15-23, doi: 10.1042/bj2020015.
  43. Larson, E. M., Umbach, A., and Jagendorf, A. T. (1989) Sulfite-stimulated release of [3H]ADP bound to chloroplast thylakoid ATPase, Biochim. Biophys. Acta, 973, 78-85, doi: 10.1016/S0005-2728(89)80405-0.
  44. Jarman, O. D., Biner, O., and Hirst, J. (2021) Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans, Biochim. Biophys. Acta Bioenerg., 1862, 148355, doi: 10.1016/j.bbabio.2020.148355.
  45. Dunn, S. D., Zadorozny, V. D., Tozer, R. G., and Orr, L. E. (1987) Epsilon subunit of Escherichia coli F1-ATPase: effects on affinity for aurovertin and inhibition of product release in unisite ATP hydrolysis, Biochemistry, 26, 4488-4493, doi: 10.1021/bi00388a047.
  46. Shah, N. B., Hutcheon, M. L., Haarer, B. K., and Duncan, T. M. (2013) F1-ATPase of Escherichia coli: the epsilon-inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands, J. Biol. Chem., 288, 9383-9395, doi: 10.1074/jbc.M113.451583.
  47. Milgrom, Y. M., and Duncan, T. M. (2020) F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit’s C-terminal domain are mutually exclusive, Biochim. Biophys. Acta Bioenerg., 1861, 148189, doi: 10.1016/j.bbabio.2020.148189.
  48. Kato-Yamada, Y. (2005) Isolated epsilon subunit of Bacillus subtilis F1-ATPase binds ATP, FEBS Lett., 579, 6875-6878, doi: 10.1016/j.febslet.2005.11.036.
  49. Ishikawa, T., and Kato-Yamada, Y. (2014) Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites, PLoS One, 9, 1-5, doi: 10.1371/journal.pone.0107197.
  50. Akanuma, G., Tagana, T., Sawada, M., Suzuki, S., Shimada, T., Tanaka, K., et al. (2019) C-terminal regulatory domain of the ε subunit of FoF1 ATP synthase enhances the ATP-dependent H+ pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis, MicrobiologyOpen, 8, e00815, doi: 10.1002/mbo3.815.

补充文件

附件文件
动作
1. JATS XML
2. Supplement
下载 (1MB)
3. Fig. 1. The structure of the bacterial subcomplex F1 and the position of the possible binding site of LDAO. a is the alignment of the β subunit sequences; a fragment with a loop–shaped section covering the catalytic center is presented (see in the text; on the alignment, the residues composing this section are highlighted in a gray rectangle). The black border highlights the position occupied by residues homologous to Q412 in the enzyme of the bacterium C. thermarum. b – General view of the F1 C. thermarum subcomplex (the 5HKK structure from the PDB database is used); ADP bound in the catalytic center is colored red, and the approximate position of LDAO bound nearby is blue. The frame highlights the area of the catalytic center shown in panels b and G. b, d is an enlarged image of the area of the catalytic center in two conformations: with the loop β407–418 highlighted in yellow, in the "initial" (c) and "elevated" (d) positions

下载 (415KB)
4. Fig. 2. ATPase activity of F1 complexes of E. coli wild-type and with replacement of βV409Q, as well as B. subtilis wild-type and with replacement of βQ419V, depending on the concentration of ATP. Activity was measured in a conjugated ATP-regenerating system by the NADH oxidation rate (see "Materials and Methods")

下载 (95KB)
5. Fig. 3. ATPase activity of the wild-type BF1 complex and with βQ419V substitution, measured in the ATP-regenerating system. a, b – Activity in the presence of 1 mM of ATP, depending on the concentration of LDAO. The points correspond to activity values normalized to the activity of the same drug without LDAO; the curves reflect the average values for each LDAO concentration. The solid curves represent a wild–type enzyme, and the dotted curves represent an enzyme with the βQ419V mutation. a – Activity in the presence of Cl−. b – Comparison of activities in the presence of Cl− (taken from Graph a) and SO42−. b – Absolute activity (in units/ mg of protein; 1 unit corresponds to the hydrolysis of 1 mmol of ATP per minute) depending on the concentration of ATP. The black symbols represent measurements without LDAO (taken from Fig. 2), blank symbols – measurements in the presence of 3.9 mM (0.09%) LDAO

下载 (238KB)
6. Fig. 4. ATPase activity of EF1 (a, b) complexes and EFOF1 (c, d) liposome-reconstructed wild-type (×) complexes with βV409Q (+) replacement in the presence of LDAO detergent. a are representative curves for measuring EF1 ATPase activity. The reaction was started by adding ATP up to 1 mM (long arrows). Next, LDAO (small arrows) was added to the cuvette to the concentration indicated above the arrow (mM). The gray color shows the results of control experiments (ATP hydrolysis in a cuvette without LDAO and in a cuvette where LDAO was introduced before the start of the ATPase reaction at a concentration of 4 mM). b–d – The points on the graphs correspond to the EF1 (b) and EFOF1 (c, d) activities, normalized by the activity value of the corresponding complex without the addition of LDAO. The lines show the average values calculated from the given points. A mixture of valinomycin and nigericin up to 500 nM each was added as uncoupler (g). The absolute values of the activities corresponding to measurements without LDAO and with the addition of LDAO to 1 mM and 8 mM are shown in the Table. 2 and 3

下载 (262KB)
7. Fig. 5. ATPase activity of EF1 complexes and wild-type EFOF1 embedded in liposomes and with βV409Q (⚫) replacement in the presence of inorganic phosphate (Ph). The points on the graphs correspond to EF1 or EFOF1 activities, normalized by the activity value of the corresponding complex without the addition of phosphate. A mixture of valinomycin and nigericin up to 500 nM each was added as a uncoupler

下载 (178KB)
8. 6. ATPase activity of EF1 and EFOF1 complexes of wild type (×) and with βV409Q (+) substitution in the presence of sulfite (Na2SO3). The points on the graphs correspond to EF1 or EFOF1 activities, normalized by the activity value of the corresponding complex without the addition of sulfite. The lines show the average values calculated from the above points. The solid curves represent a wild–type enzyme, and the dotted curves represent an enzyme with the βV409Q mutation. A mixture of valinomycin and nigericin up to 500 nM each was added as a uncoupler

下载 (169KB)

版权所有 © Russian Academy of Sciences, 2025