Effect of high temperature isothermal annealing on optical properties of Gd3AlxGa5-xO12 (x = 1—3) and Gd3Al2Ga3O12:Ce3+ crystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Crystals of gadolinium-aluminum-gallium garnets with the following charge compositions: Gd3AlxGa5-xO12 (x = 1—3) and Gd3Al2Ga3O12:Ce3+ were grown The influence of high-temperature annealing in air on the optical properties of these crystals has been established. It was shown that annealing does not affect the oxidation state of cerium. Using X-ray fluorescence analysis, a gallium deficiency was established in all the studied crystals.

Full Text

Restricted Access

About the authors

V. M. Kasimova

National University of Science and Technology MISIS

Author for correspondence.
Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 119049

N. S. Kozlova

National University of Science and Technology MISIS

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 119049

E. V. Zabelina

National University of Science and Technology MISIS

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 119049

O. A. Buzanov

JSC “Fomos Materials”

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 107023

A. S. Bykov

National University of Science and Technology MISIS

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 119049

A. V. Targonsky

National Research Centre “Kurchatov Institute”; Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 123182; Moscow, 119333

A. V. Rogachev

National Research Centre “Kurchatov Institute”

Email: kasimova.vm@misis.ru
Russian Federation, Moscow, 123182

References

  1. Lecoq P. // Nucl. Instrum. Meth. Phys. Res. Sect. A. 2016. V. 809. P. 130.
  2. Korzhik M., Alenkov V., Buzanov O. et al. // Cryst. Res. Technol. 2019. V. 54. No. 4. Art. No. 1800172.
  3. Alenkov V., Buzanov O., Dosovitskiy G. et al. // Nucl. Instrum. Meth. Phys. Res. Sect. A. 2019. V. 916. P. 226.
  4. Dilillo G., Campana R., Zampa N. et al. // Int. Soc. Opt. Photon. 2020. V. 11444. Art. No. 1144493.
  5. Dilillo G., Zampa N., Campana R. et al. // Nucl. Instrum. Meth. Phys. Res. B. 2022. V. 513. P. 33.
  6. Tyagi M., Sarkar P.S., Singh A.K. et al. // Piscataway: IEEE Trans. Nucl. Sci. 2019. V. 66. No. 4. P. 724.
  7. Lee C., Kim H.R. // J. Environ. Radioact. 2019. V. 204. P. 76.
  8. Sekine M., Matsuki T., Suzuki S. et al. // Radiat. Meas. 2019. V. 124. P. 74.
  9. Kawachi N., Yin Y.G., Suzui N. et al. // J. Environ. Radioact. 2016. V. 151. P. 461.
  10. Liu S., Sun P., Liu Y. et al. // ACS Appl. Mater. Interfaces. 2018. V. 11. No. 2. P. 2130.
  11. Tamagawa Y., Inukai Y., Ogawa I., Kobayashi M. // Nucl. Instrum. Meth. Phys. Res. A. 2015. V. 795. P. 192.
  12. Касимова В.М. Оптические свойства и дефектообразование в кристаллах Gd3AlxGa5-xO12 и Gd3Al2Ga3O12:Ce. Дисс. … канд. физ.-мат. наук. Москва: НИТУ МИСИС, 2022. 140 с.
  13. Касимова В.М., Козлова Н.С., Забелина Е.В. и др. // Неорг. матер. 2023. Т. 59. № 8. C. 871.
  14. Meng F. Development and improvement of cerium activated gadolinium gallium aluminum garnets scintillators for radiation detectors by codoping. PhD thesis. Knoxville, 2015. 159 p.
  15. Spassky D., Spassky A., Lebedev V. et al. // Opt. Mater. 2023. V. 145. No. 114477.
  16. Матковский А.О., Сугак Д.Ю., Улманис У.А., Савицкий В.Г. Центры окраски в редкоземельных галлиевых гранатах. Саласпилс: ЛАФИ, 1987. 42 с.
  17. Dormenev V., Brinkmann K-T., Dosovitskiy G. et al. // J. Phys. Conf. Ser. 2019. V. 1162. No. 1. Art. No. 012021.
  18. Yoneyama M., Kataoka J., Arimoto M. et al. // J. Instrum. 2018. V. 13. No. 02. Art. No. P02023.
  19. Auffray E., Dosovitskiy G., Fedorov A. et al. // Radiat. Phys. Chem. 2019. V. 164. Art. No. 108365.
  20. Касимова В.М., Козлова Н.С., Бузанов О.А. и др.// Поверхность. Рентген. синхротр. и нейтрон. исслед. 2021. № 12. С. 7; Kasimova V.M., Kozlova N.S., Zabelina E.V. et al. // J. Surf. Invest. X-Ray, Synchrotron. Neutron Techniq. 2021. V. 15. No. 6. P. 1259.
  21. Кузьмичева Г.М., Козликин С.Н., Жариков Е.В. и др. // Журн. неорг. химии. 1988. Т. 33. № 9. С. 2200.
  22. Мусаханов Д.А., Тулегенова А.Т., Лисицын В.М и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 969; Mussakhanov D.A., Lisitsyn V.M., Stepanov S.A. et al. // Bull. Rus. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 799.
  23. Козлова Н.С., Бузанов О.А., Забелина Е.В. и др. // Изв. РАН. Сер. физ. 2014. Т. 78. № 1. С. 1500; Kozlova N.S., Zabelina E.V., Bykova M.B. et al. // Bull. Rus. Acad. Sci. Phys. 2014. V. 78. No. 11. P. 1227.
  24. Забелина Е.В., Козлова Н.С., Гореева Ж.А., Касимова В.М. // Изв. вузов. МЭТ. 2019. Т. 22. № 3. C. 168; Zabelina E.V., Kozlova N.S., Goreeva Zh.A., Kasimova V.M. // Russ. Microelectron. 2020. V. 49. No. 8. P. 617.
  25. Мальчукова Е.В., Буазо Б., Трапезникова И.Н., Теруков Е.И. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 334; Malchukova E.V., Boizot B., Terukov E.I. // Bull. Rus. Acad. Sci. Phys. 2019. V. 83. No. 3. P. 227.
  26. Касимова В.М., Козлова Н.С., Бузанов О.А. и др. // Неорг. матер. 2022. Т. 58. № 3. C. 302; Kasimova V.M., Kozlova N.S., Buzanov O.A. et al. // Inorg. Mater. 2022. V. 58. P. 288.
  27. Wu Y., Meng F., Li Q. et al. // Phys. Rev. Appl. 2014. V. 2. No. 4. Art. No. 044009.
  28. Li M., Meng M., Chen J. // Phys. Stat. Sol. B. 2021. V. 258. Art. No. 2000603.
  29. Norman A., Perrichon V., Bensaddik A. et al. // Top. Catal. 2001. V. 16. No. 1. P. 363.
  30. Tyagi M., Meng F., Koschan M. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. No. 47. Art. No. 475302.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. XANES spectra near the L3 absorption edge of cerium in GAGG: Ce3+: initial state (a), annealing in air (b).

Download (126KB)
3. Fig. 2. Spectral dependences of the transmission coefficients of Gd3Al1Ga4O12 (1, 2), Gd3Al2Ga3O12 (3, 4), Gd3Al3Ga2O12 (5, 6), GAGG:Ce3+ (7, 8) crystals in the initial state (1, 3, 5, 7) and after annealing in air at 1173 K (2, 4, 6, 8) (a) and at 1523 K for GAGG:Ce3+ (b) in the wavelength range of 200–700 nm.

Download (163KB)
4. Fig. 3. Spectral dependences of the transmission coefficients of Gd3Al1Ga4O12 (1, 2), Gd3Al2Ga3O12 (3, 4), Gd3Al3Ga2O12 (5, 6) crystals in the initial state (1, 3, 5) and after annealing in air at 1173 K (2, 4, 6) in the wavelength range of 265–290 nm (a) and 295–325 nm (b).

Download (203KB)

Copyright (c) 2024 Russian Academy of Sciences