Features of corrosive-mechanical strength of TiNi alloy in different structural states in biological solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We performed the study of the corrosion-mechanical strength and fractographic analysis of fractures of the Ti49.1Ni50.9 alloy in coarse-grained and ultrafine-grained states in biological environments. The study has shown that there is a multidirectional change in the mechanical characteristics of the Ti49.1Ni50.9 alloy in coarse-grained and ultrafine-grained states.

About the authors

A. A. Churakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Email: churakovaa_a@mail.ru
Ufa, 450075 Russia; Ufa, 450076 Russia

E. I. Iskhakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450075 Russia; Ufa, 450076 Russia

E. V. Vorobiev

Ufa University of Science and Technology

Ufa, 450076 Russia

References

  1. Otsuka K., Ren X. // Progr. Mater. Sci. 2005. V. 50. P. 511.
  2. Yamauchi K., Ohkata I., Tsuchiya K., Miyazaki S. Shape Memory and Superelastic Alloys: Technologies and Applications. C.: Woodhead Publ. 2011. 232 p.
  3. Lecce L., Concilio A. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications. O.: Butterworth-Heinemann. 2011. 934 p.
  4. Zhang J., Somsen C., Simon T. et al. // Acta Mater. 2012. V. 60. P. 1999.
  5. Vandenkerckhove R., Chandrasekaran M., Vermaut P. et al. // Mater. Sci. Eng. A. 2004. V. 378. P. 532.
  6. Asadipour H., Doostmohammadi A., Saeidi N., Moshref-Javadi M. // Phys. Metal. Metallorg. 2019. V. 120. No. 8. P. 740.
  7. Hu T., Chu С., Xin Y. et al. // J. Mater. Res. 2010. V. 25. P. 350.
  8. Амирханова Н.А., Валиев Р.З., Адашева С.Л., Прокофьев Е.А. // Вестн. УГАТУ. 2006. Т. 7. № 1. С. 143.
  9. Ryhanen J., Kallioinen M., Tuukkanen J. et al. // J. Biomed. Mater. Res. 1998. V. 41. No. 3. P. 481.
  10. Petrini L., Migliavacca F. // J. Metall. 2011. Art. No. 501483.
  11. Geetha M., Singh A.K., Asokamani R., Gogia A.K. // Progr. Mater. Sci. 2009. V. 54. No. 3. P. 397.
  12. Rocher P., Medawar L.El., Hornez J.-C. et al. // Scripta Mater. 2004. V. 50. No. 2. P. 255.
  13. Cai C., Song B., Wei O. et al. // Surf. Coat. Technol. 2015. V. 280. P. 194.
  14. Шурыгина Н.А., Глезер А.М., Дьяконов Д.Л., Сундеев Р.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 997; Shurygina N.A., Glezer A.M., Diakonov D.L., Sundeev R.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 771.
  15. Игашева В.П., Налесник О.И. // В кн.: Матер. XI всеросс. научн.-практ. конф. студ. и асп. «Химия и химическая технология в XXI веке». Т. 1. (ТПУ, 2010). С. 55.
  16. Tian H., Schryvers D., Shabalovskaya S., Van Humbeeck J. // Microsc. Microanal. 2009. V. 15. P. 62.
  17. Ionita D., Caposi M., Demetrescu I. et al. // Mater. Corros. 2015. V. 66. No. 5. P. 472.
  18. Марков А.В., Башкова И.О., Молин И.А. // Cб. тр. ВНКСФ – 23 (Екатеринбург, 2017). C. 324.
  19. Коршунов А.В. // Изв. ТПУ. Инжин. георес. 2015. C. 114.
  20. Cui Z, Li S., Zhou J. et al. // Surf. Coat. Technol. 2020. V. 391. Art. No. 125730.
  21. Zhao Y., Bai L., Sun Y. et al. // Corros. Sci. 2021. V. 190. Art. No. 109654.
  22. Kassab E., Frotscher M., Eggeler G. et al. // Mater. Today Commun. 2022. V. 33. Art. No. 104401.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences