Electric-field-induced dynamics of topological loops in chiral nematic liquid crystal droplets

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We presented an experimental study of structural transitions in chiral nematic liquid crystal droplets under the action of alternating electric field. We identify that the increase of the applied voltage results in a periodic transition between bipolar and radial structures.

Sobre autores

Yu. Timirov

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: timirov.yulay@gmail.com
Ufa, 450075 Russia

O. Skaldin

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

V. Delev

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

E. Basyrova

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

Bibliografia

  1. Lavrentovich O.D., Kleman M. // In: Chirality in Liquid Crystals. Partially Ordered Systems. New York: Springer, 2001. 502 p.
  2. Orlova T., A?hoff S., Yamaguchi T. et al. // Nature Commun. 2015. V. 6. P. 7603.
  3. Durey G., Sohn H.R., Ackerman P.J. et al. // Soft Matter. 2020. V. 16. No. 11. P. 2669.
  4. Urbanski M., Reyes C.G., Noh J. et al. // J. Phys. Cond. Matt. 2017. V. 29. No. 13. Art. No. 133003.
  5. Moreno-Razo J., Sambriski E., Abbott N. et al. // Nature. 2012. V. 485. P. 86.
  6. Wang X., Miller D., Bukusoglu E. et al. // Nature Mater. 2016. V. 15. P. 106.
  7. Ackerman P., Lagemaat J., Smalyukh I. // Nature Commun. 2015. V. 6. P. 6012.
  8. Peng C., Turiv T., Guo Y. et al // Science. 2016. V. 354. No. 6314. P. 882.
  9. Keber F.C., Loiseau E., Sanchez T. et al. // Science. 2014. V. 345. P. 1135.
  10. Lin I.-H., Miller D.S., Bertics P.J. et al. // Science. 2011. V. 332. P. 1297.
  11. Dogishi Y., Sakai Y., Sohn W.Y. et al. // Soft Matter. 2018. V. 14. No. 40. P. 8085.
  12. Ryabchun A., Lancia F., Chen J. et al. // Adv. Mater. 2020. V. 32. Art. No. 2004420.
  13. Sakai Y., Sohn W.Y., Katayama K. // RSC Advances. 2020. V. 10. P. 21191.
  14. Kibble T.W.B. // J. Phys. A. Math. Gen. 1976. V. 9. No. 8. P. 1387.
  15. Mermin N.D. // Rev. Mod. Phys. 1979. V. 51. No. 3. P. 591.
  16. Zurek W.H. // Nature. 1985. V. 317. P. 505.
  17. Зырянов В.Я., Сутормин В.С., Крахалев М.Н. и др. // Изв. РАН. Сер. физ. 2017. Т. 81 № 5. С. 641; Zyryanov V.Ya., Sutormin V.S., Krakhalev M.N. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 5. P. 594.
  18. Тимиров Ю.И., Скалдин О.А., Басырова Е.Р. и др. // ФТТ. 2015. T. 57. № 9. С. 1863; Timirov Yu.I., Skaldin O.A., Basyrova E.R. et al. // Phys. Solid State. 2015. V. 57. P. 1912.
  19. Скалдин О.А., Тарасов О.С., Тимиров Ю.И. и др. // ЖЭТФ. 2018. Т. 153. № 2. С. 304.; Skaldin O.A., Tarasov O.S., Timirov Yu.I. et al. // JETP. 2018. V. 126. P. 255.
  20. Скалдин О.А., Клебанов И.И., Тимиров Ю.И. и др. // Письма в ЖЭТФ 2018. Т. 107. № 11. С. 728.; Skaldin O.A., Klebanov I.I., Timirov Yu.I. et al. // JETP Lett. 2018. V. 107. No. 11. P. 695.
  21. Zhou Y., Bukusoglu E., Mart??nez-Gonza?lez J.A. et al. // ACS Nano. 2016. V. 10. No. 7. P. 6484.
  22. Sec D., Porenta T., Ravnik M. et al. // Soft Matter. 2012. V. 8. P. 11982.
  23. Скалдин О.А., Тимиров Ю.И., Лебедев Ю.А. // Письма в ЖТФ 2010. Т. 36. С. 23; Skaldin O.A., Timirov Yu.I. // JETP Lett. 2009. V. 90. P. 633.
  24. Gunyakova V.A., Parshin A.M., Shabanov V.F. // Eur. Phys. J. E. 2006. V. 20. P. 467.
  25. Xu F., Crooker P.P. // Phys. Rev. E. 1997. V. 56. P. 6853.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025