Electric-field-induced dynamics of topological loops in chiral nematic liquid crystal droplets
- Autores: Timirov Y.I.1, Skaldin O.A.1, Delev V.A.1, Basyrova E.R.1
-
Afiliações:
- nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 447–452
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://hum-ecol.ru/0367-6765/article/view/686027
- DOI: https://doi.org/10.31857/S0367676525030197
- EDN: https://elibrary.ru/GCJSEO
- ID: 686027
Citar
Resumo
We presented an experimental study of structural transitions in chiral nematic liquid crystal droplets under the action of alternating electric field. We identify that the increase of the applied voltage results in a periodic transition between bipolar and radial structures.
Sobre autores
Yu. Timirov
nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: timirov.yulay@gmail.com
Ufa, 450075 Russia
O. Skaldin
nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
V. Delev
nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
E. Basyrova
nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Bibliografia
- Lavrentovich O.D., Kleman M. // In: Chirality in Liquid Crystals. Partially Ordered Systems. New York: Springer, 2001. 502 p.
- Orlova T., A?hoff S., Yamaguchi T. et al. // Nature Commun. 2015. V. 6. P. 7603.
- Durey G., Sohn H.R., Ackerman P.J. et al. // Soft Matter. 2020. V. 16. No. 11. P. 2669.
- Urbanski M., Reyes C.G., Noh J. et al. // J. Phys. Cond. Matt. 2017. V. 29. No. 13. Art. No. 133003.
- Moreno-Razo J., Sambriski E., Abbott N. et al. // Nature. 2012. V. 485. P. 86.
- Wang X., Miller D., Bukusoglu E. et al. // Nature Mater. 2016. V. 15. P. 106.
- Ackerman P., Lagemaat J., Smalyukh I. // Nature Commun. 2015. V. 6. P. 6012.
- Peng C., Turiv T., Guo Y. et al // Science. 2016. V. 354. No. 6314. P. 882.
- Keber F.C., Loiseau E., Sanchez T. et al. // Science. 2014. V. 345. P. 1135.
- Lin I.-H., Miller D.S., Bertics P.J. et al. // Science. 2011. V. 332. P. 1297.
- Dogishi Y., Sakai Y., Sohn W.Y. et al. // Soft Matter. 2018. V. 14. No. 40. P. 8085.
- Ryabchun A., Lancia F., Chen J. et al. // Adv. Mater. 2020. V. 32. Art. No. 2004420.
- Sakai Y., Sohn W.Y., Katayama K. // RSC Advances. 2020. V. 10. P. 21191.
- Kibble T.W.B. // J. Phys. A. Math. Gen. 1976. V. 9. No. 8. P. 1387.
- Mermin N.D. // Rev. Mod. Phys. 1979. V. 51. No. 3. P. 591.
- Zurek W.H. // Nature. 1985. V. 317. P. 505.
- Зырянов В.Я., Сутормин В.С., Крахалев М.Н. и др. // Изв. РАН. Сер. физ. 2017. Т. 81 № 5. С. 641; Zyryanov V.Ya., Sutormin V.S., Krakhalev M.N. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 5. P. 594.
- Тимиров Ю.И., Скалдин О.А., Басырова Е.Р. и др. // ФТТ. 2015. T. 57. № 9. С. 1863; Timirov Yu.I., Skaldin O.A., Basyrova E.R. et al. // Phys. Solid State. 2015. V. 57. P. 1912.
- Скалдин О.А., Тарасов О.С., Тимиров Ю.И. и др. // ЖЭТФ. 2018. Т. 153. № 2. С. 304.; Skaldin O.A., Tarasov O.S., Timirov Yu.I. et al. // JETP. 2018. V. 126. P. 255.
- Скалдин О.А., Клебанов И.И., Тимиров Ю.И. и др. // Письма в ЖЭТФ 2018. Т. 107. № 11. С. 728.; Skaldin O.A., Klebanov I.I., Timirov Yu.I. et al. // JETP Lett. 2018. V. 107. No. 11. P. 695.
- Zhou Y., Bukusoglu E., Mart??nez-Gonza?lez J.A. et al. // ACS Nano. 2016. V. 10. No. 7. P. 6484.
- Sec D., Porenta T., Ravnik M. et al. // Soft Matter. 2012. V. 8. P. 11982.
- Скалдин О.А., Тимиров Ю.И., Лебедев Ю.А. // Письма в ЖТФ 2010. Т. 36. С. 23; Skaldin O.A., Timirov Yu.I. // JETP Lett. 2009. V. 90. P. 633.
- Gunyakova V.A., Parshin A.M., Shabanov V.F. // Eur. Phys. J. E. 2006. V. 20. P. 467.
- Xu F., Crooker P.P. // Phys. Rev. E. 1997. V. 56. P. 6853.
Arquivos suplementares
