Спектры и угловые распределения атмосферных нейтрино и мюонов от распада очарованных частиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Выполнен новый расчет атмосферных лептонов — мюонных нейтрино и мюонов от распадов очарованных частиц (D±, D0, D0, Λс) — для той же модели адронного каскада, которая использовалась в расчетах характеристик атмосферных лептонов от распадов π- и K-мезонов. Построены спектральные зенитно-угловые распределения (D, Λс)-лептонов и (π, K)-лептонов. Найдены интервалы кросс-энергии, в которых (D, Λс)-лептоны дают вклад, сопоставимый с потоками (π, K)-мюонов и нейтрино. Показана возможность обнаружения (D, Λс)-нейтрино на эксперименте при энергиях много ниже кросс-энергии.

Полный текст

Доступ закрыт

Об авторах

М. Н. Сороковиков

Объединенный институт ядерных исследований

Автор, ответственный за переписку.
Email: sorokovikov@jinr.ru
Россия, Дубна

А. Д. Морозова

Объединенный институт ядерных исследований; Иркутский государственный университет

Email: sorokovikov@jinr.ru
Россия, Дубна; Иркутск

Т. С. Синеговская

Иркутский государственный университет путей сообщения

Email: sorokovikov@jinr.ru
Россия, Иркутск

С. И. Синеговский

Объединенный институт ядерных исследований; Иркутский государственный университет

Email: sorokovikov@jinr.ru
Россия, Дубна; Иркутск

Список литературы

  1. Аврорин А.В., Аврорин А.Д., Айнутдинов В.М. и др. (Коллаборация Baikal-GVD) // ЖЭТФ. 2022. Т. 161. № 4. С. 476; Avrorin A.V., Avrorin A.D., Aynutdinov V.M. et al. (Baikal-GVD Collaboration) // JETP. 2022. V. 134. No. 4. P. 399.
  2. Аврорин А.В., Аврорин А.Д., Айнутдинов В.М. и др. (Коллаборация Baikal-GVD) // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1016; Avrorin A.D., Avrorin A.V., Aynutdinov V.M. et al. (Baikal-GVD Collaboration) // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 921.
  3. Abbasi R., Ackermann M., Adams J. et al. (IceCube Collaboration) // Astrophys. J. 2022. V. 928. No. 1. Art. No. 50.
  4. Albert A., Alves S., Andre M. et al. (ANTARES Collaboration) // Phys. Lett. B. 2021. V. 816. Art. No. 136228.
  5. Ageron M., Aiello S., Ameli F. et al. (KM3NeT Collaboration) // Eur. Phys. J. C. 2020. V. 80. No. 2. Art. No. 99.
  6. Кайдалов А.Б., Пискунова О.И. // Ядерн. физика. 1986. Т. 43. С. 1545.
  7. Кайдалов А.Б. // Ядерн. физика. 2023. Т. 66. № 11. С. 2044; Kaidalov A.B. // Phys. Atom. Nucl. 2003. V. 66. No. 11. P. 1994.
  8. Sinegovsky S.I., Sorokovikov M. N. // Eur. Phys. J. C. 2020. V. 80. Art. No. 34.
  9. Kochanov A.A., Sinegovskaya T.S., Sinegovsky S.I. // Astropart. Phys. 2008. V. 30. P. 219.
  10. Sinegovskaya T.S., Morozova A.D., Sinegovsky S.I. // Phys. Rev. D. 2015. V. 91. Art. No. 063011.
  11. Sinegovsky S.I., Kochanov A.A., Sinegovskaya T.S. et al. // Int. J. Mod. Phys. A. 2010. V. 25. P. 3733.
  12. Кочанов А.А., Синеговская Т.С., Синеговский С.И. // ЖЭТФ. 2013. Т. 143. С. 459; Kochanov A.A., Sinegovskaya T.S., Sinegovsky S.I. // JETP. 2013. V. 116. P. 395.
  13. Морозова А.Д., Кочанов А.А., Синеговская Т.С. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 4. С. 555; Morozova A.D, Kochanov A.A., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 4. P. 516.
  14. Кочанов А.А., Морозова А.Д., Синеговская Т.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1030; Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 933.
  15. Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012054.
  16. Кочанов А.А., Морозова А.Д., Синеговская Т.С. и др. // Изв. РАН. Cер. физ. 2021. Т. 85. № 4. С. 570; Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 433.
  17. Kochanov A.A., Morozova A.D., Sinegovskaya T.S. et al. // arXiv: 2109.13000. 2021.
  18. Калмыков Н.Н., Остапченко С.С., Павлов А.И. // Изв. РАН. Сер. физ. 1994. Т. 58. № 12. С. 21; Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Bull. Russ. Acad. Sci. Phys. 1994. V. 8. P. 1966.
  19. Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Nucl. Phys. B. (Proc. Suppl.) 1997. V. 52. P. 17.
  20. Ostapchenko S. // Nucl. Phys. B. (Proc. Suppl.). 2008. V. 175—176. P. 73.
  21. Кимель Л.Р., Мохов Н.В. // Изв. вузов. Физ. 1974. Т. 17. № 10. С. 17.
  22. Калиновский А.Н., Мохов Н.В., Никитин Ю.П. Прохождение частиц высоких энергий через вещество. М.: Энергоатомиздат, 1985. 248 с.
  23. Gaisser T.K. // Astropart. Phys. 2012. V. 35. P. 801.
  24. Aartsen M.G., Ackermann M., Adams J. et al. (IceCube Collaboration) // Eur. Phys. J. C. 2015. V. 75. Art. No. 116.
  25. Aartsen M.G., Ackermann M., Adams J. et al. (IceCube Collaboration) // Eur. Phys. J. C. 2017. V. 77. Art. No. 692.
  26. Аракелян Г.Г. // Ядерн. физика. 1998. Т. 61. С. 1682; Arakelyan G. H. // Phys. Atom. Nucl. 1998. V. 61. No. 9. P. 1570.
  27. Fedynitch A., Riehn F., Engel R. et al. // Phys. Rev. D. 2019. V. 100. Art. No. 103018.
  28. Bhattacharya A., Enberg R., Jeong Y.S. et al. // JHEP. 2016. V. 2016. No. 11. Art. No. 167.
  29. Gauld R., Rojo J., Rottoli L. et al. // JHEP. 2016. V. 2016. No. 2. Art. No. 130.
  30. Zenaiev O., Garzelli M.V., Lipka K. et al. (PROSA Collaboration) // JHEP. 2020. V. 2020. No. 4. Art. No. 118.
  31. Garzelli M.V., Moch S., Zenaiev O. et al. (PROSA Collaboration) // JHEP. 2017. V. 2017. No. 5. Art. No. 4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дифференциальные спектры атмосферных лептонов вблизи вертикали: широкая полоса (а) — спектр мюонных (D, Λс)-нейтрино в модели QGSM + H3a; линии вдоль полосы — результаты расчетов co спектром H3a других моделей рождения очарованных частиц; две кривые, пересекающие широкую полосу, — спектры (π, Κ)-нейтрино для моделей КМ и QGSJET II-03; узкие полосы — (D, Λс)-нейтрино (б) и мюоны (в), пересекающие линии (π, Κ)-лептонов. Спектры (π, Κ)-лептонов рассчитаны для двух моделей адрон-ядерных взаимодействий — КМ + H3a (сплошная линия) и QGSJET II-03 + H3a (штриховая линия)

Скачать (332KB)
3. Рис. 2. Спектральное зенитно-угловое усиление дифференциальных потоков атмосферных нейтрино (а) и мюонов (б), рассчитанное для зенитного угла θ ≈ 84.26°: 1 — (π, K)-лептоны (КМ); 2 — суммарный спектр КМ + QGSM; 3 — (D, Λс)-лептоны (QGSM); панели внизу (а, б) — (π, K)-лептоны с лучшим разрешением, на которых видна немонотонность анизотропии, отражающая последовательное “включение” и насыщение доминирующих источников — от вкладов двухчастичных распадов заряженных пионов и каонов, к трехчастичным полулептонным распадам заряженных и нейтральных каонов. Это приводит к широкому распределению с “горбами”; 2-й горб (мюоны) как раз отвечает редкому Гi/Г ≃ 4 × 10–4) полулептонному распаду короткоживущего нейтрального каона KS (время жизни 0.9 × 10–10 с). Влияние модели адронного каскада на спектральное зенитно-угловое усиление потоков атмосферных нейтрино (в) и мюонов (г): 1 — (π, K)-лептоны для модели КМ; 2 — (π, K)-лептоны для модели QGSJET II-03; 3 — суммарный спектр КМ + QGSM; 4 — то же, что и 3, но для модели QGSJET II-03 + QGSM

Скачать (426KB)

© Российская академия наук, 2024