Combined systems of recombinase polymerase amplification and membrane immunochromatography or enzyme linked immunoassay for quantitative determination of Salmonella enterica bacterial DNA
- Авторлар: Serchenya T.S.1, Akhremchuk K.U.2, Valentovich L.N.2, Lapina V.S.1, Sviridov O.V.1
-
Мекемелер:
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
- Institute of Microbiology of National Academy of Sciences of Belarus
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 194-206
- Бөлім: Articles
- URL: https://hum-ecol.ru/0555-1099/article/view/687481
- DOI: https://doi.org/10.31857/S0555109925020091
- EDN: https://elibrary.ru/EPBDAR
- ID: 687481
Дәйексөз келтіру
Аннотация
The combined bioanalytical systems for the detection of Salmonella enterica bacteria in milk have been developed and studied. These test systems are based on isothermal recombinase polymerase amplification (RPA) of a fragment of the invA gene and detection of the DNA amplicons containing biotin and fluorescein residues by a rapid membrane chromatography on test strips or an enzyme-linked immunosorbent assay (ELISA) in microplates. It was shown that the developed test systems are specific, sensitive and easy to perform. The RPA procedure requires 20 min at a temperature of 40°C. The immunochromatographic detection of amplicons provides rapid testing within 10 min as well as possible visual recording of the result. ELISA takes 75 min, allows to analyze a large number of samples and quantify the result. It has been established that the developed bioanalytical systems are characterized by broad specificity for various serotypes of Salmonella enterica subspecies enterica, belonging to serogroups B, C, D and E. The detection limit of genomic DNA of S. enterica in the test systems was 0.5 fg. The detection limit of Salmonella enterica bacteria in artificially contaminated milk samples was 8 × 102 CFU/ml. After enrichment for 6 h, the detection limit proved to be 2 × 100 CFU per 25 g of milk.
Толық мәтін

Авторлар туралы
T. Serchenya
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Хат алмасуға жауапты Автор.
Email: serchenya@iboch.by
Белоруссия, Minsk, 220084
K. Akhremchuk
Institute of Microbiology of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Белоруссия, Minsk, 220084
L. Valentovich
Institute of Microbiology of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Белоруссия, Minsk, 220084
V. Lapina
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Белоруссия, Minsk, 220084
O. Sviridov
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Email: serchenya@iboch.by
Белоруссия, Minsk, 220084
Әдебиет тізімі
- Fung F., Wang H.S., Menon S. // Biomed. J. 2018. V. 41 № 2. P. 88–95. https://doi.org/10.1016/j.bj.2018.03.003
- Mkangara M. // Int. J. Food Sci. 2023 V. 2023. 8899596. https://doi.org/10.1155/2023/8899596
- Lin L., Zheng Q., Lin J., Yuk H.-G., Guo L. // Eur. Food Res. Technol. 2020. V. 246. P. 373–395. https://doi.org/10.1007/s00217-019-03423-9
- Wang M., Zhang Y., Tian F., Liu X., Du S., Ren G. // Foods. 2021. V. 10. № 10. P. 2402. https://doi.org/10.3390/foods10102402
- “Salmonella”, Official Methods of Analysis of AOAC INTERNATIONAL, 22. / Ed. G.W. Latimer. Oxford University Press, 2023. P. C17-256–C17-259. https://doi.org/10.1093/9780197610145.003.2282
- De Boer E., Beumer R.R. // Int. J. Food Microbiol. 1999. V. 50. Р. 119–130. https://doi.org/10.1016/S0168-1605(99)00081-1
- Techathuvanan C., Draughon F.A., D’Souza D.H. // J. Food Prot. 2011. V. 74. Р. 294–301. https://doi.org/10.4315/0362-028X.JFP-10-306
- Gao D., Yu J., Dai X., Tian Y., Sun J., Xu X., Cai X. // Poult. Sci. 2023. V. 102. 102513. https://doi.org/10.1016/j.psj.2023.102513
- Wang W., Liu L., Song S., Tang L., Kuang H., Xu C. // Sensors. 2015. V. 15. P. 5281–5292. https://doi.org/10.3390/s150305281
- Kuhn K.G., Falkenhorst G., Ceper T.H., Dalby T., Ethelberg S., Mølbak K., Krogfelt K.A. // J. Med. Microbiol. 2012. V. 61. P. 1–7. https://doi.org/10.1099/jmm.0.034447-0
- Hendrickson O.D., Byzova N.A., Safenkova I.V., Panferov V.G., Dzantiev B.B., Zherdev A.V. // Nanomaterials (Basel). 2023. V. 13. № 23. P. 3074. https://doi.org/10.3390/nano13233074
- Zhang H.Q., Li H.N., Zhu H.L., Pekarek J., Podesva P., Chang, H.L., Neuzil P. // Sens. Actuator B-Chem. 2019. V. 298. Р. 1–6. https://doi.org/10.1016/j.snb.2019.126924
- Sidstedt M., Rådström P., Hedman J. // Anal. Bioanal. Chem. 2020. V. 412. № 9. Р. 2009–2023. https://doi.org/10.1007/s00216-020-02490-2
- Bickley J., Short J.K., McDowell D.G., Parkes H.C. // Lett. Appl. Microbiol. 1996. V. 22. № 2. P. 153–158. https://doi.org/10.1111/j.1472-765X.1996.tb01131.x
- Powell H.A., Gooding C.M., Garrett S.D., Lund B.M., Mckee R.A. // Lett.Appl. Microbiol. 1994. V. 8. № 1. P. 59–61. https://doi.org/10.1111/j.1472-765X.1994.tb00802.x
- Ivanov A.V., Safenkova I.V., Drenova N.V., Zherdev A.V., Dzantiev B.B. // Biosensors. 2022. V. 12. P. 1174. https://doi.org/10.3390/bios12121174
- Hu J., Huang R., Sun Y., Wei X., Wang Y., Jiang C. et al. // J. Microbiol. Methods. 2019. V. 158. P. 25–32. https://doi.org/10.1016/j.mimet.2019.01.018
- Chen J., Liu X., Chen J., Guo Z., Wang Y., Chen G. et al. // Food Anal. Methods. 2019. V. 12. P. 1791–1798. https://doi.org/10.1007/s12161-019-01526-3
- Daher R.K., Stewart G., Boissinot M., Bergeron M.G. // Clin. Chem. 2016. V. 62. P. 947–958. https://doi.org/10.1373/clinchem.2015.245829
- Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. // Nucleic Acids Res. 2000. V. 28. № 12. P. E63. https://doi.org/10.1093/nar/28.12.e63
- Barreda-García S., Miranda-Castro R., de-Los-Santos-Álvarez N., Miranda-Ordieres A.J., Lobo-Castañón M.J. // Anal. Bioanal. Chem. 2018. V. 410. № 3. P. 679–693. https://doi.org/10.1007/s00216-017-0620-3
- Le B.H., Seo Y.J.// Bioorg. Med. Chem. Lett. 2018. V. 28. P. 2035–2038. https://doi.org/10.1016/j.bmcl.2018.04.058
- Ivanov A.V., Safenkova I.V., Zherdev A.V., Dzantiev B.B. // Talanta. 2020. V. 210. P. 120616. https://doi.org/10.1016/j.talanta.2019.120616
- Zhao L., Wang J., Sun X.X., Wang J., Chen Z., Xu X. et al. // Front Cell Infect. Microbiol. 2021. V. 11. P. 631921. https://doi.org/10.3389/fcimb.2021.631921
- Ahmed A., van der Linden H., Hartskeerl R.A. // Int. J. Environ. Res. Public Health. 2014. V. 11. P. 4953–4964. https://doi.org/10.3390/ijerph110504953
- Kim J.Y., Lee J.-L. // J. Food Saf. 2016. V. 36. P. 402–411. https://doi.org/10.1111/jfs.12261
- Li J., Ma B., Fang J., Zhi A., Chen E., Xu Y., Sun C., Zhang M. // Foods. 2020. V. 9. № 1. P. 27. https://doi.org/10.3390/foods9010027
- Liao C., Pan L., Tan M., Zhou Z., Long S., Yi X. et al.// Front. Bioeng. Biotechnol. 2024. V. 12. 1379939. https://doi.org/10.3389/fbioe.2024.1379939
- Liu R., Wang Z., Liu X., Chen A., Yang S. // Poult. Sci. 2020. V. 99. № 12. P. 7225–7232. https://doi.org/10.1016/j.psj.2020.10.020
- Santiago-Felipe S., Tortajada-Genaro L.A., Morais S., Puchades R., Maquieira A. // Food Chem. 2015. V. 174. P. 509–515. https://doi.org/10.1016/j.foodchem.2014.11.080
- Serchenya T.S., Akhremchuk K.U., Valentovich L.N., Lapina V.S., Sviridov O.V. // Proceedings of the National Academy of Sciences of Belarus. Chemical series. 2024. V. 60. № 4. P. 314–325 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-4-314-325
- Frens G. // Nature Physical Science. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
- Byzova N.A., Serchenya T.S., Vashkevich I.I., Zherdev A.V., Sviridov O.V., Dzantiev B.B. // Microchemical Journal. 2020. V. 156. Аrticle 104884. https://doi.org/10.1016/j.microc.2020.104884
- Hermanson G.T. Bioconjugate Techniques. Elsevier. 1996. P. 377-380.
- Wallace H.A, Wang H., Jacobson A., Ge B., Zhang G., Hammack T. Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella. 2023. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
- Rahn K., De Grandis S.A., Clarke R.C., McEwen S.A., Galán J.E., Ginocchio C. et al. // Mol. Cell Probes. 1992. V. 6. № 4. P. 271–279. https://doi.org/10.1016/0890-8508(92)90002-f
- Galán J.E., Curtiss R. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. № 16. Р. 6383–6387. https://doi.org/10.1073/pnas.86.16.6383
- González-Escalona N., Brown E.W., Zhang G. // Food Res. Int. 2012. V. 48. P. 202–208. https://doi.org/10.1016/j.foodres.2012.03.009
- Brenner F.W., Villar R.G., Angulo F.J., Tauxe R., Swaminathan B. // J. Clin. Microbiol. 2000. V. 38. № 7. P. 2465–2467. https://doi.org/10.1128/JCM.38.7.2465-2467.2000
- Gao W., Huang H., Zhu P., Yan X., Fan J., Jiang J., Xu J. // Bioprocess Biosyst. Eng. 2018 V. 41. № 5. Р. 603–611. https://doi.org/10.1007/s00449-018-1895-2
- Choi G., Jung J.H., Park B.H., Oh S.J., Seo J.H., Choi J.S., Kim D.H., Seo T.S. // Lab on a Chip. 2016. V. 16. № 12. P. 2309–2316. https://doi.org/10.1039/c6lc00329j
- Yang Q., Wang F., Jones K.L., Meng J., Prinyawiwatkul W., Ge B.// Food Microbiol. 2015. V. 46. P. 485–493. https://doi.org/10.1016/j.fm.2014.09.011
Қосымша файлдар
