Временная шкала адаптации при обработке звуковых последовательностей нейронами первичной слуховой коры бодрствующих мышей (mus musculus)
- Авторы: Егорова М.А.1, Акимов А.Г.1, Хорунжий Г.Д.1
- 
							Учреждения: 
							- Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
 
- Выпуск: Том 110, № 2 (2024)
- Страницы: 157-168
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://hum-ecol.ru/0869-8139/article/view/651669
- DOI: https://doi.org/10.31857/S0869813924020016
- EDN: https://elibrary.ru/DKEXFV
- ID: 651669
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Впервые исследовали постстимульную слуховую адаптацию нейронов первичных полей слуховой коры у бодрствующих домовых мышей к звуковым последовательностям, образованным четырьмя 100-миллисекундными тональными сигналами, частота которых соответствовала характеристической частоте нейрона, интервал между тональными составляющими одной последовательности был одинаков, а в разных последовательностях варьировал от 0 до 2000 мс. Анализ полученных результатов продемонстрировал эффект адаптации в ответах подавляющего большинства исследованных нейронов, выражавшийся в отсутствие активности или значительном снижении активности, вызванной следующими за первым компонентами серии звуков, при межстимульных интервалах 0–500 мс. Количественная оценка проявления адаптации в зависимости от величины межстимульных интервалов в последовательности тонов по всей популяции исследуемых нейронов выявила сходство временных шкал адаптации бодрствующих и наркотизированных мышей.
Полный текст
 
												
	                        Об авторах
М. А. Егорова
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
							Автор, ответственный за переписку.
							Email: ema6913@yandex.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
А. Г. Акимов
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
														Email: ema6913@yandex.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Г. Д. Хорунжий
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
														Email: ema6913@yandex.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Список литературы
- Adrian ED (1928) The basis of sensation. New York. W.W. Norton.
- Бибиков НГ (2010) Нейрофизиологические механизмы слуховой адаптации. II. Эффекты последействия. Успехи физиол. наук 41(4): 77–92. [Bibikov NG (2010) Neurophysiological mechanisms of auditory adaptation. II. Aftereffects. Advanc Physiol Sci 41(4): 77–92. (In Russ)].
- Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46): 10440–10453. https://doi.org/10.1523/JNEUROSCI.1905-04.2004
- Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A (2014) Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 8: 111. https://doi.org/10.3389/fnsys.2014.00111
- Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS (2020) Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 18(10): e3000744. https://doi.org/10.1371/journal.pbio.3000984
- Bregman AS (1990) Auditory scene analysis. The Perceptual Organization of Sound. Cambridge. MA. MIT Press.
- MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): Perceptual segregation of tone sequences. J Acoust Soc Am 103(6): 3581–3587. https://doi.org/10.1121/1.423063
- Kanwal JS, Medvedev AV, Micheyl C (2003) Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat’s natural environment. Network 14(3): 413–435. https://doi.org/10.1088/0954-898X_14_3_303
- Gaub S, Ehret G (2005) Grouping in auditory temporal perception and vocal production is mutually adapted: the case of wriggling calls of mice. J Comp Physiol A 191: 1131–1135. https://doi.org/10.1007/s00359-005-0036-y
- Pérez-González D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Europ J Neurosci 22(11): 2879–2885. https://doi.org/10.1111/j.1460-9568.2005.04472.x
- Pérez-González D, Hernández O, Covey E, Malmierca MS (2012) GABAA-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7(3): e34297. https://doi.org/10.1371/journal.pone.0034297
- Anderson LA, Malmierca MS (2012) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1): 52–62. https://doi.org/10.1111/ejn.12018
- Malmierca MS, Cristaudo S, Pérez-González D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17): 5483–5493. https://doi.org/10.1523/JNEUROSCI.4153-08.2009
- Valdés-Baizabal C, Casado-Román L, Bartlett EL, Malmierca MS (2021) In vivo whole-cell recordings of stimulus-specific adaptation in the inferior colliculus. Hear Res 399: 107978. https://doi.org/10.1016/j.heares.2020.107978
- Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29(22): 7359–7363. https://doi.org/10.1523/JNEUROSCI.0793-09.2009
- Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31(47): 17306–17316. https://doi.org/10.1523/JNEUROSCI.1915-11.2011
- Malinina ES, Egorova MA, Khorunzhii GD, Akimov AG (2016) The time scale of adaptation in tonal sequence processing by the mouse auditory midbrain neurons. Dokl Biol Sci 470: 209–213. https://doi.org/10.1134/S001249661605001X
- Egorova MA, Malinina ES, Akimov AG, Khorunzhii GD (2018) Adaptation of different types of neurons in the midbrain auditory center to sound pulse sequences. J Evol Biochem Physiol 54(6): 482–486. https://doi.org/10.1134/S002209301806008X
- Egorova MA, Akimov AG (2020) Specialization of neurons with different response patterns in the mouse Mus musculus auditory midbrain and primary auditory cortex during communication call processing. J Evol Biochem Physiol 56: 406–414. https://doi.org/10.1134/S0022093020050038
- Egorova MA, Khorunzhii GD, Akimov AG (2019) The timescale of adaptation in tonal sequence processing by mouse primary auditory cortical neurons. J Evol Biochem Physiol 55: 497–501. https://doi.org/10.1134/S0022093019060085
- Joachimsthaler B, Uhlmann M, Miller F, Ehret G, Kurt S (2014) Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus). Eur J Neurosci 39(6): 904–918. https://doi.org/10.1111/ejn.12478
- Joachimsthaler B, Brugger D, Skodras A, Schwarz C (2015) Spine loss in primary somatosensory cortex during trace eyeblink conditioning. J Neurosci 35(9): 3772–3781. https://doi.org/10.1523/JNEUROSCI.2043-14.2015
- Egorova MA (2005) Frequency selectivity of neurons of the primary auditory field (A1) and anterior auditory field (AAF) in the auditory cortex of the house mouse (Mus musculus). J Evol Biochem Physiol 41: 476–480. https://doi.org/10.1007/s10893-005-0085-4
- Ehret G, Riecke S (2002) Mice and humans perceive multiharmonic communication sounds in the same way. Proc Natnl Acad Sci U S A 99(1): 479–482. https://doi.org/10.1073/pnas.012361999
- Stiebler I, Neulist R, Fichtel I, Ehret G (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J Comp Physiol A 181: 559–571. https://doi.org/10.1007/s003590050140
- Duque D, Malmierca MS (2015) Stimulus-specific adaptation in the inferior colliculus of the mouse: anesthesia and spontaneous activity effects. Brain Struct Funct 220: 3385–3398. https://doi.org/10.1007/s00429-014-0862-1
- Nieto-Diego J, Malmierca MS (2016) Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol 14(3): e1002397. https://doi.org/10.1371/journal.pbio.1002397
- Von der Behrens W, Bäuerle P, Kössl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29(44): 13837–13849. https://doi.org/10.1523/JNEUROSCI.3475-09.2009
- Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49): 16475–16484. https://doi.org/10.1523/JNEUROSCI.2793-10.2010
- Вартанян ИА (1978) Слуховой анализ сложных звуков. Л. Наука. [Vartanyan IA (1978) Auditory analysis of complex sounds. L. Nauka. (In Russ)].
- Бобошко МЮ (2012) Речевая аудиометрия: учебное пособие. СПб: Изд-во СПбГМУ. [Boboshko MJ (2012) Speech audiometry: textbook. St. Petersburg: Publ House of St. Petersburg State Med Univer. (In Russ)].
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




