Features of ohmic contact with an ion-induced p-GaAs nanolayer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The properties of a metal contact with a p-GaAs layer ~8 nm thick induced by low-energy Ar+ ions on an n-GaAs wafer as a result of the conduction tipe type conversion have been studied. The metal was deposited according to the standard technology on the surface of the semiconductor p-GaAs with a natural oxide layer, partially restored when the sample was transferred to a deposition setup. To prevent metallization of the nanolayer, the contact was not annealed. Therefore, a Schottky barrier emerged at the interface and a residual oxide layer retained. However, current-voltage characteristics showed that the formed contact is predominantly ohmic. It has been found that a high concentration of ion-induced defects radically reduces the width of the Schottky barrier and ensures the tunneling of holes and electrons of the semiconductor valence band through the barrier in the forward and reverse directions, respectively. It is shown that ion bombardment of the p-GaAs semiconductor surface makes it possible to obtain an ohmic contact with any metal without annealing. It is concluded that the ion-stimulated modification of the semiconductor and the exclusion of annealing make it possible to obtain a tunnel ohmic contact with an extremely thin p-GaAs nanolayer coated with a residual layer of natural oxide.

Texto integral

Acesso é fechado

Sobre autores

V. Mikoushkin

Ioffe Institute

Autor responsável pela correspondência
Email: V.Mikoushkin@mail.ioffe.ru
Rússia, St. Petersburg

Е. Markova

Ioffe Institute

Email: V.Mikoushkin@mail.ioffe.ru
Rússia, St. Petersburg

D. Novikov

Ioffe Institute

Email: V.Mikoushkin@mail.ioffe.ru
Rússia, St. Petersburg

Bibliografia

  1. Baca A.G., Ashby C.I.H. Ohmic contacts. // Fabrication of GaAs Devices. London, UK: IET, 2005. P. 179.
  2. Blank T.V., Gol’dberg Yu.A. // Semiconductors. 2007. V. 41. P. 1263. https://doi.org/10.1134/S1063782607110012
  3. Mikoushkin V.M., Bryzgalov V.V., Nikonov S.Yu., Solonitsyna A.P., Marchenko D.E. // EPL. 2018. V. 122. P. 27002. https://doi.org/10.1209/0295-5075/122/27002
  4. Mikoushkin V.M., Makarevskaya E.A., Brzhezinskaya M. // Appl. Surf. Sci. 2021. V. 539. P. 148273. https://doi.org/10.1016/j.apsusc.2020.148273
  5. Mikoushkin V.M., Makarevskaya E.A., Marchenko D.E. // Appl. Surf. Sci. 2022. V. 577. P. 151909. https://doi.org/10.1016/j.apsusc.2021.151909
  6. Макаревская Е.А., Новиков Д.А., Микушкин В.М., Калиновский В.С., Контрош Е.В., Толкачев И.А., Прудченко К.К. // Поверхность: Рентген. синхротр. и нейтрон. исслед. 2022. Т. 10. С. 81. https://doi.org/10.31857/S1028096022100107
  7. Surdu-Bob C.C., Saied S.O., Sullivan J.L. // Appl. Surf. Sci. 2001. V. 183. P. 126. https://doi.org/10.1016/S0169-4332(01)00583-9
  8. Feng L., Zhang L., Liu H., Gao X., Miao Z., Cheng H.C., Wang L., Niu S. Characterization study of native oxides on GaAs(100) surface by XPS. // Proc. SPIE. Fifth International Symposium on Photoelectronic Detection and Imaging, Beijing, China. 2013. V. 8912. P. 89120N. https://doi.org/10.1117/12.2033679
  9. Mikoushkin V.M., Bryzgalov V.V., Makarevskaya E.A., Solonitsyna A.P., Marchenko D.E. // Semiconductors. 2018. V. 52. P. 2057. https://doi.org/10.1134/S1063782618160194
  10. Малевская А.В., Калиновский В.С., Ильинская Н.Д., Малевский Д.А., Контрош Е.В., Шварц М.З., Андреев В.М. // ЖТФ. 2018. Т. 88. Р. 1211. https://doi.org/10.21883/JTF.2018.08.46311.2591
  11. Haynes W.M. // CRC Handbook of Chemistry and Physics. 95th ed. London: CRC Press, Taylor & Francis, Boca Raton, 2014. 2704 p. https://doi.org/10.1201/b17118
  12. Ziegler J.F., Manoyan J.M. // Nucl. Instr. Meth. B. 1988. V. 35. P. 215. https://doi.org/10.1016/0168-583X(88)90273-X
  13. Streetman B.G., Banerjee S.K. Junctions. // Solid State Electronic Devices. 6th ed., Upper Saddle River, New York: Prentice-Hall, 2006. P. 154.
  14. Swaminathan V. // Bull. Mater. Sci. 1982. V. 4. P. 403. https://doi.org/10.1007/BF02748739
  15. Puska M.J. // J. Phys.: Condens. Matter. 1989. V. 1. P. 7347. https://doi.org/10.1088/0953-8984/1/40/010.
  16. Kuriyama K., Yokoyama K., Tomizawa K., Takeuchi T., Takahashi H. // Appl. Phys. Lett. 1992. V. P. 843. https://doi.org/10.1063/1.107763
  17. Hurle D.T.J. // J. Appl. Phys. 2010. V. 107. P. 121301. https://doi.org/10.1063/1.3386412
  18. Соболев Н.А., Бер Б.Я., Казанцев Д.Ю., Калядин А.Е., Карабешкин К.В., Микушкин В.М., Сахаров В.И., Серенков И.Т., Шек Е.И., Шерстнев Е.В., Шмидт Н.М. // Письма ЖТФ. 2018. Т. 44. С. 44. https://doi.org/10.21883/PJTF.2018.13.46326.17139
  19. Kittel C. // Introduction to solid state physics (8th ed.). New Jersey: Wiley, 2013. P. 680. https://kittel.pdf (elte.hu)
  20. Sze S.M. Physics of semiconductor devices. New York: John Wiley&Sons. 1981. P. 815. https://doi.org/10.1002/0470068329

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram of p–n junction formation on the surface of an n-GaAs wafer under the action of an Ar+ ion beam (a). Here λ is the de Broglie wavelength of the valence band top electron; W is the Schottky barrier width; do is the thickness of the partially restored native oxide layer; d is the thickness of the ion-modified layer. Profile of point defect distribution formed during GaAs bombardment by Ar+ ions with energy Ei = 2500 eV and fluence Q ~1×1014 cm–2 (b). The thickness of the ion-modified layer d = 2RP ~ 8 nm, where the projected range RP corresponds to the maximum density of implanted ions.

Baixar (26KB)
3. Fig. 2. Left — energy diagram of wide (a, b) and narrow (c) Schottky barriers on p-GaAs in the initial state (a) and under reverse bias (b, c); the metal contact on the right is ohmic. Right — schematic representation of the corresponding I–V curves.

Baixar (29KB)
4. Fig. 3. Schottky barrier profile on an ion-modified p-GaAs layer compared with the de Broglie wavelength (arrows) of holes (λH ~ 8 nm) and valence band electrons (λe ~ 3 nm). Total barrier width W = d = 2RP ~ 8 nm, defect density NS = 0.7 × 1019 cm–3. Contact voltage U = 0.

Baixar (13KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024