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ABSTRACT

Understanding the aerosol transmission mechanism of respiratory infectious diseases is crucial for predicting indoor air
circulation and optimizing ventilation system design. A literature search was conducted using various keyword combinations in
the PubMed database. The selection included studies examining the impact of indoor microclimate parameters and ventilation
system performance on the risk of viral transmission. Since 2020, there has been increasing interest in studying how viral
infections spread via aerosols within buildings and transportation infrastructure, considering the operational conditions of
engineering systems. Currently, substantial evidence supports the dependence of viral aerosol viability on indoor temperature
and humidity levels. Maintaining an optimal relative humidity of 40-60% at standard room temperature is essential not only for
aerosol stability but also for virus neutralization. However, there is a lack of studies investigating the effects of air mobility and
indoor pollution on the stability of viral pathogens. A significant body of literature confirms the influence of ventilation system
efficiency on infection risk in buildings. To reduce the spread of respiratory viruses, an air exchange rate of at least 30 m%/h per
person is recommended. Based on the findings, a set of practical recommendations for ventilation system operation amidst
increased disease incidence has been developed. Discrepancies between international and Russian regulatory requirements
regarding indoor climate parameters and air quality standards have been identified, emphasizing the need for improved
measures to mitigate the spread of respiratory infections.

Keywords: ventilation; virus; environmental pollutants; aerosol.

To cite this article:
Abramkina DV, Verma V. The impact of ventilation systems on the risk of viral transmission (review article). Ekologiya cheloveka (Human Ecology).
2024;31(6):419-428. DOI: https://doi.org/10.17816/humeco640885

Received: 02.11.2024 Accepted: 26.11.2024 Published online: 12.01.2025
V-2
ECO®VECTOR The article can be used under the CC BY-NC-ND 4.0 International License

© Eco-Vector, 2024


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17816/humeco640885
https://doi.org/10.17816/humeco640885
https://crossmark.crossref.org/dialog/?doi=10.17816/humeco640885&domain=PDF&date_stamp=2024-12-25

0Ob30PH T.31,Ne 6, 2024 JKONOrVIA HenoBeKa 20
4

DOI: https://doi.org/10.17816/humeco640885

BnusiHue cucteM BEHTUNALUM HA PUCK
pacnpocTpaHeHus BUpycoB (063opHas cTaTbe)

[.B. AbpaMkuHa, B. BepMma

MocKoBCKWI rocyfapcTBEHHBIN CTPOUTENbHBIN yHUBepcuTeT, Mocksa, Poccus

AHHOTALMA

lMoHMMaHWe MexaHu3Ma aspo30SIbHOM Mepefayn PecrnvpaTopHbX MHPEKLMOHHbIX 3aboneBaHuii MMeeT BaXHOe 3HayeHue
ANS NPOTrHO3MPOBaHUA BO3AYLUHOTO PeXMMa NMOMELLEHMIA MPY NPOEKTUPOBaHUM CUCTEM BeHTUNAUMK. loucK TeopeTnyecKmux
UccneLoBaHuiA NPOM3BOAMIN C MOMOLLLbI PasfIMyHbIX KOMOMHALMI Kilo4eBbIX CNOB B base faHHbIX PubMed. B Bbibopke Obiin
NpefcTaBfieHbl CTaTbu MO BAUAHUIO NapaMeTpOB BHYTPEHHEr0 MUKPOK/IMMATA W YCIOBUIA paboTbl BEHTUASLMOHHBIX CUCTEM
Ha pucK pacnpoctpaHenus Bupycos. C 2020 r. HabnaaeTca NOBbILIEHHbIA UHTEPEC K U3YUEHMIO MEXaHU3Ma pacnpocTpaHe-
HWS BUPYCHbIX MHEKLMIA NOCPEACTBOM a3p030/1bHOM Nepesayn BHYTPU 30aHMIA U 00BEKTOB TPaHCMOPTHOM MH(PACTPYKTYpbI
C YY4ETOM YCNOBUI KCMTyaTaUmMm UHKEHEPHbIX cucTeM. B HacTosiLLee BpeMsi CyLLecTBYeT cepb€3Has AoKa3aTenbHas 6asa 3a-
BMCMMOCTM }U3HECNOCOBHOCTH BUPYCHBIX a3po30eii 0T TeMNepaTypHO-BIAXKHOCTHOTO pexuMa noMellequid. Nopaepkanue
ONTUManbHOW OTHOCUTENbHOW BnaxHocTh Bo3ayxa oT 40 no 60% npu cTaHLapTHOM KOMHATHOM TeMnepaType HeobxoauMo
He TOJIbKO C TOYKM 3PeHns CTabUNbHOCTY a3po30SibHBIX CUCTEM, HO M HEMTPaNM3aLmMuU BUPYCOB. BbisBNEHO HefoCTaTOuHOE KO-
JINYECTBO UCCNIEA0BAHWN MO BAMSHUIO NOABUKHOCTM U 3arpsi3HEHUS BHYTPEHHE cpebl Ha CTabUbHOCTb BUPYCHBIX NaTore-
HoB. [pefcTaBneHa 3HaunTeNbHas BbIDOpKA CTaTen, MOATBEPKAAIOLLMX BAMAHUE 3PHEKTUBHOCTU paboTbl BEHTUNIALMOHHBIX
CUCTEM Ha MHPEKLIMOHHYIO HarpysKy B 30aHusX. [l CHUKeHWs pucKa pacnpocTpaHeHns pecnmpaTopHbIX BUPYCOB Heobxoam-
Mo obecneunBath pacxo Bosdyxa He MeHee 30 M%/u Ha yernoBeka. Ha ocHOBe NpoBeEHHbIX TEOPETUYECKUX UCCIe0BaHMiA
bbina paspaboTaHa cucTeMa NpaKTUYECKUX PeKOMEeHAAUMi No pexkuMmy paboTbl CUCTEM BEHTUNALMW B YCIOBMSIX pPOCTa 3a-
boneBaeMocTu. BbisiBNEHbI OTKIIOHEHWS MEXAYHAPOAHBIX U POCCUMCKMX HOPMATUBHO-TEXHUYECKUX TpeboBaHuii no obecne-
UeHU0 KOM(OPTHBLIX NapaMeTPOB BHYTPEHHEN0 MUKPOKIMMATA M KAuyeCTBa BO3LYLLUHOW Cpefibl C TOUKM 3PEHUS| YMEHbLLEHUS
PUCKa pacnpocTpaHeHUs pecnupaTopHbIX 3aboneBaHuid.

KnioueBbie cnoBa: BeHTUNALMS; BUPYC; 3arpA3HnTeNn oupymarow,eﬁ cpenbl; a3p030Jib.
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BACKGROUND

This systematic review presents data on the impact of
ventilation systems on viral spread in buildings. Appro-
ximately 90% of recorded infectious disease cases are as-
sociated with acute respiratory infections [1]. Over the past
20 years, several major outbreaks of respiratory diseases
caused by airborne pathogens have been reported [2]. High
transmission intensity and prolonged persistence of indoor
aerosols lead to a sharp increase in the disease incidence.

A significant number of the Middle East Respiratory Syn-
drome (MERS-CoV) and coronavirus (COVID-19) cases has
demonstrated substantial transmission rates of hospital-
acquired infections. It was established that 41% of individu-
als infected with COVID-19 had hospital-related transmission
of this disease [3]. Prevalence of respiratory infections among
healthcare professionals ranges from 0.3% to 43.3%. Accord-
ing to the national health report, nosocomial outbreaks in
Russian healthcare facilities recorded in 2023 were primarily
airborne transmission-related (79.11%). In 2020, during the
COVID-19 pandemic, infection rates peaked at 130,803 cases.
Upper and lower respiratory tract infections constitute the
most prevalent types of nosocomial infections [4—6].

Understanding airborne transmission mechanisms of
infectious diseases is critical for predicting indoor air condi-
tions and designing ventilation systems.

METHODS

To assess the impact of ventilation systems on infectious
disease transmission risk, possible mechanisms of pathogen
spread indoors must be considered alongside viral stability
under varying microclimate parameters.

Theoretical studies were searched for in the PubMed
database using keywords. The research sample comprised
reviews and systematic reviews with openly accessible full-
text versions.

The keyword query «virus» AND «aerosol transmission»
yielded 510 results within the past 10 years, with 393 articles
published in 2020-2021, reflecting heightened research rel-
evance during the COVID-19 pandemic. Analysis of the most
relevant sources identified factors influencing viral aerosol
transmission indoors: air composition, temperature, rela-
tive humidity, air movement, and ventilation system airflow
configuration and exchange rate. Subsequent stage involved
compiling research samples for individual parameters using
queries like: (virus AND aerosol transmission) AND (relative
humidity OR RH).

The addition of «ventilation» narrowed results to 89
articles since 2006. Duplicates were excluded, and studies
relevant to the topic were manually selected since the term
«ventilation» frequently refers to respiratory therapies (me-
chanical ventilation). Ultimately, 47 studies were included for
review.
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Notably, the impact of ventilation systems on pathogenic
aerosol transmission was scarcely examined before 2020—
only two articles from 2006-2020 linked infection rate in-
creases to ventilation efficiency [7, 8]. Since 2020, there
has been increasing interest in studying how viral infections
spread within buildings and transportation infrastructure,
considering the operational conditions of engineering sys-
tems.

RESULTS

Airborne Pathways of Viral Pathogen Spread

Key transmission paths for viral diseases indoors in-
clude cross-dispersion from infected individuals, pathogen
migration from contaminated rooms to corridors and ad-
jacent spaces, transport of contaminated air via ventilation
systems, and fomite-mediated viral transmission. Earlier
studies questioned aerosol transmission of viral respiratory
infections [7]. However, outbreak analyses demonstrate that
indoor air dynamics and ventilation performance critically in-
fluence pathogen transmission occurring exclusively through
airborne infection spread in multifamily residential buildings
[8, 91, public dining facilities [10], retail stores [11], fitness
centers [12], and public transport [13].

An aerosol constitutes a dispersed system of suspended
particles in a gaseous medium. Breathing, speaking, sneez-
ing, and coughing release microscopic fluid droplets carrying
viral pathogens. The term «aerosol» refers to particles of
all sizes capable of being suspended under prevailing mi-
croclimatic conditions. Particle size variability spans 5-6
orders of magnitude. Minimal aerosol sizes are molecular
clusters containing =6—10 molecules exhibiting significant
stability while adhering irreversibly upon surface impact
without rebound. Fine-particle aerosol systems (<50 pm)
pose the highest disease transmission risk due to prolonged
airborne stability, lower respiratory tract penetrability, and
heightened fomite transmission potential. Particles <20 pm
easily penetrate the body through the larynx; those <5—6 pm
reach alveolar spaces, which is typical for viral diseases like
MERS-CoV [14].

The upper limit of aerosol size is defined by particle
dynamic behavior and dispersion system particle stability.
Emerging theory posits that pathogenic bioaerosols may in-
clude particles up to 100 um [15, 16]. Cough- and sneeze-in-
duced local convective airflows disperse aerosol particles
over >2-meter distances [17, 18].

Indoor aerosol particle aerodynamics are determined by
the impact of various internal and external factors on the sus-
pended particles, including gravitational and inertial forces,
Brownian motion, electrophoretic, and thermal forces. For
pathogenic bioaerosols, we should consider not only physical
features influencing the system stability but also biological
virus inactivation due to environmental impact.
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The Impact of Microclimate Parameters on Viral
Transmission Risk

Indoor Temperature and Humidity Regime

Establishing correlations between indoor temperature
and humidity regime and viral aerosol dynamics constitutes a
complex interdisciplinary challenge, requiring determination
of physicochemical properties for each specific viral disease.

Respiratory disease transmission risk is higher in
cold-climate countries due not only to immune suppression
at sub-zero temperatures but also to low air moisture con-
tent [19]. Hot and humid regions, particularly during rainy
seasons, are less susceptible to aerosol-driven viral out-
breaks, though tropical climates increase contact transmis-
sion potential [20].

Respiratory virus inactivation due to protein and nucleic
acid denaturation occurs at elevated air temperatures (27-
70 °C) [21], exceeding permissible indoor parameters. Thus,
it is excluded from further consideration.

Indoor relative humidity (RH, @, %) critically influences
bioaerosol system stability by affecting both counts of sus-
pended particles during breathing and coughing and viral
aerosol survivability [20]. Higher RH slows exhaled droplet
evaporation, increasing large-particle concentrations that
gravitationally settle. Ideal conditions would show minimal
pathogen sedimentation for isolated droplets in stagnant air
[22]. Turbulent flows from human movement, door open-
ing, natural ventilation, and operation of ventilation systems
reduce droplet evaporation time while extending dispersal
range and sedimentation duration [23]. Lower RH acceler-
ates aerosol particle evaporation forming droplet nuclei that
remain suspended for hours, enabling prolonged infectious
transmission [24].

Maintaining target RH is essential not only for aerosol
system stability control but also for viral neutralization. Re-
searchers identify various viral viability dependencies on air
humidity: increased inactivation with rising RH, decreased
inactivation with rising RH, and U-shaped viability [21]. Re-
spiratory viruses (influenza, SARS-CoV-2) exhibit U-shaped
viability [25-27], enabling determination of optimal indoor RH
ranges. Thus, 40%—-60% RH at room temperature represents
the ideal humidity for reducing airborne respiratory infection
spread [28, 29].

Russian regulatory documents (GOST 30494-2011, GOST
12.1.005-88) specify optimal and admissible RH require-
ments for cold and warm seasons of the year. For residential
and public buildings, the optimal RH in winter and summer
should be within 30%-45% (admissible <60%) and 30%—-60%
(admissible <65%), respectively. For industrial buildings, mi-
croclimatic parameters depend on the work intensity, with
annual optimal RH considered 40%—-60% (admissible <75%)
The design of ventilation systems must maintain admissi-
ble parameters throughout occupied areas within buildings.
Achieving the most comfortable optimal criteria requires
technical specifications or economic justification. Most
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buildings fail to maintain RH ranges that reduce the risk of
respiratory virus transmission during cold seasons.

Air Mobility in Building Work Areas

Alongside temperature and relative humidity, air move-
ment velocity (mobility) in work areas significantly influences
indoor thermal-physical conditions.

Air remains in continuous motion within ventilated spac-
es. Uneven air distribution creates local stagnation areas with
elevated temperatures and pollutant concentrations. Low air
mobility forms a stagnant personal microclimate around in-
dividuals—quickly saturated with exhaled moisture and ex-
hibiting higher temperatures.

Increased air velocity accelerates pathogenic aerosol dis-
persion through spaces, heightening contamination risk for
individuals distant from the source [30]. On the other hand,
greater air mobility enhances evaporation rates and droplet
nuclei formation, accelerating aerosol particle sedimentation.
The optimal air velocity for minimizing viral transmission risk
in work areas remains understudied. The reviewed research
sample reveals no recommended mobility range for reducing
airborne infection likelihood.

Indoor Air Quality

Poor air quality and elevated dust levels accelerate viral
spread [31] and indirectly increase respiratory mortality [32].

Enclosed spaces harbor volatile organic compounds,
biological contaminants, vapors, gases, and dust. Infected
individuals release aerosol clouds through talking, breathing,
and coughing that disperse throughout rooms, depositing on
enclosure structures, furniture, and equipment surfaces and
binding to airborne pollutants. Fine particulate matter, also
known as PM2.5, acts as viral pathogen vectors, penetrating
deep into human airways [33]. Airborne organic surfactants
stabilize viral aerosols and prolong their viability [34].

All aforementioned factors governing viral aerosol dis-
persion intensity and stability depend on building engineering
system efficacy. This research further outlines primary venti-
lation-based strategies for reducing indoor infectious loads.

Impact of Ventilation Systems on the Risk
of Viral Transmission

After the COVID-19 pandemic, numerous international
standardization bodies and engineering associations recog-
nize the need for implementing «proper ventilation» in en-
closed spaces to reduce infectious loads [35]. Unfortunately,
current scientific research insufficiently addresses specific
measures for modifying ventilation system operations during
periods of elevated disease incidence. General guidelines in-
clude reducing room occupancy, periodic natural ventilation,
and increasing air exchange rates [36—38]. However, prac-
tical recommendations for establishing special operational
regimes for ventilation systems in residential, public, and
administrative buildings to mitigate viral transmission risks
remain undeveloped.
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Mechanical and Natural Ventilation Systems

Supplemental natural ventilation serves as an effective
measure to reduce viral load in indoor spaces. In kinder-
gartens, schools, universities, and offices, mandatory ven-
tilation during breaks is recommended. For layouts with
windows on opposite facades, natural flow-through (cross)
ventilation should be implemented. Studies demonstrate that
cross-ventilation significantly decreases viral load: in a 100
m? room, virion counts drop from 10,000 to 0 within 15 min-
utes at a consistent air velocity of 1.5 m/s [39]. Unilateral
ventilation is less efficient, but still reduces viral load by half.

During winter, outdoor air typically has low moisture
content. When naturally ventilated through open windows
or vents, this air enters rooms and warms via heating sys-
tems, potentially increasing thermal energy consumption in
residential and public buildings by up to 35% annually [40].
Concurrently, relative humidity rapidly declines, reaching
10%—-15%. As discussed earlier, low RH causes aerosol par-
ticles shrinking to smaller sizes due to evaporation of their
aqueous envelopes. Particles smaller than 50 pm become
difficult to capture and remove effectively via ventilation sys-
tems [41].

When implementing natural ventilation, outdoor air qual-
ity must be ensured and prioritized. Periodic ventilation in
areas with high suspended particle concentrations may com-
promise indoor air quality and reduce viral aerosol removal
efficacy. Respiratory disease incidence increases with ele-
vated concentrations of airborne suspended particles [42].
Research investigating dust content in museum environments
[43] indicates that drum-type humidifiers not only maintain
optimal relative humidity (40%-60%) but also substantially
reduce fine particulate matter in the air. Dust concentration
reductions exceeding 70% were observed for particles sized
2.5-10.0 pm. Drum-type humidifiers operate via natural
evaporation, preventing humidity from exceeding 60%. Lo-
cal devices allow for decreasing airborne respiratory virus
viability.

Centralized ventilation and air-conditioning systems in-
crease ariborne infection transmission risks across building
heights, particularly in multi-story residential complexes
equipped with natural exhaust ventilation systems featur-
ing vertical collection ducts and warm attics. Under adverse
weather conditions, «backdraft» effects may occur, allowing
contaminated air from ventilation ducts to infiltrate apart-
ments through exhaust grilles [44].

Mechanical ventilation systems effectively deliver clean
outdoor air and remove indoor contaminants. However, de-
sign, installation, or operational errors can create tragic sce-
narios where ventilation itself becomes an infection source.
Hospital ward inspections [45, 46] revealed PCR-positive
samples from ventilation grilles and exhaust units, con-
firming viral spread through ductwork with accumulation on
equipment. Delayed filter replacement and failure to clean
and disinfect ducts facilitate pathogen transmission and dis-
ease outbreaks indoors. These issues are exacerbated in
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air-recirculation systems, as standard coarse filters in pub-
lic buildings cannot efficiently capture particles below 5 pm.
Therefore, during increased disease incidence, mandatory
inspection and cleaning of ventilation systems and transition
to direct-flow air configurations is recommended.

Required Air Exchange Rate

The COVID-19 Expert Group identified three primary
factors enabling disease outbreaks in buildings: enclosed
spaces with inadequate air exchange, overcrowded rooms
with high occupancy, and close contact [47]. Increased air
exchange rates reduce infectious loads indoors. The rec-
ommended airflow rate per person is at least 30 m¥/h [47].
This value is based on the long-term experience in the field
of building hygiene and occupational safety research, rep-
resenting a fundamental requirement. According to Russian
ventilation design standards (SP 60.13330.2020), minimum
air exchange rates for intermittently occupied spaces are at
least 20 m?/h, which is below international recommenda-
tions. Particular risk arises in densely intermittently occupied
spaces: cinemas, theaters, airport and railway lounges, and
shopping centers. Brief exposure does not eliminate trans-
mission risk, as viruses remain infectious in aerosols for
several hours [48]. High COVID-19 viral concentrations de-
tected in canteens, conference halls, and restrooms confirm
cross-transmission during brief exposures [49, 50].

Recommended minimum airflow rates for outbreak pre-
vention must account for pathogen virulence. To determine
standard airflow when addressing the SARS-CoV-2 delta
variant, it may be necessary to establish higher exchange
rates incorporating optimal indoor air velocity requirements
for infection control [51].

Air Exchange Configuration Schemes

Controlling airflow patterns indoors is essential for main-
taining high air quality. Research demonstrates that changes
in overall and local infection risks from airborne transmis-
sion under different air distribution schemes are complex and
non-linear [52].

Mixed air distribution with «top-to-top» supply and ex-
haust achieves uniform temperature and pollutant dispersion
within the space under ideal conditions. While this approach
dilutes aerosol concentrations, insufficient air exchange may
accelerate pathogen spread throughout the space [53]. High
airflow volumes in compact areas like densely-seated cafés
and restaurants often necessitate close proximity between
supply and exhaust vents. Supply air entering the space fails
to reach work areas due to immediate capture by exhaust
vents. This effect is called «short air circulation». Stagnation
areas are formed in the work area with elevated tempera-
tures and contaminant levels.

Displacement ventilation supplies air to the work area
with upper-level exhaust. Thermal buoyancy forms verti-
cal convection currents, stratifying temperature and con-
taminants along room height. Displacement ventilation
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effectiveness against viral transmission depends on posi-
tioning between infected individuals and other people in the
room. When people remain seated =1.5 m apart (in case of
COVID-19), displacement ventilation reduces infection likeli-
hood more effectively than mixing ventilation; however, ef-
fectiveness reverses when distances decrease [54].

Complex schemes combining mixed air distribution with
personalized ventilation demonstrate superior effective-
ness [53]. Personalized supply air delivery directly to breath-
ing zones reduces cross-infection risk by <50% [53, 55].

DISCUSSION

The majority of reviewed articles outline significant im-
pact of the ventialtion system efficacy on the risk of respira-
tory infection spread. There is an insufficient body of research
regarding aerosol viability dynamics of viral infections under
varying air pollution levels. The reviewed research sample
reveals no recommended mobility range for reducing con-
tamination likelihood. More extensive research is needed on
local humidifier use and their effects on respiratory virus
viability. Discrepancies were identified between internation-
al and domestic regulatory requirements for maintaining
comfortable indoor environmental conditions and air quality
standards.

CONCLUSION

Compelling and sufficient evidence exists for aerosol
transmission of viral respiratory infections, underscoring the
urgent need for interdisciplinary research on how microcli-
mate parameters and engineering system operation affect
disease spread.

Based on theoretical studies, a set of practical recom-
mendations has been compiled to reduce outbreak likelihood
in public and residential buildings.

1. Optimal relative humidity levels should be maintained
indoors (40%-60%). Local drum-type humidifiers can reduce
infectious loads indoors by purging fine particulate matter
and suppressing viral pathogen viability when properly ope-
rated.
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2. The recommended air exchange rate per person is at
least 30 m3/h.

3. During transitional and cold seasons—peak periods
for respiratory disease transmission—control for ventilation
system efficacy should be intensified (including operational
checks and design compliance), ductwork and equipment
cleaning and disinfection should be conducted, and timely
filter replacements should be ensured.

4. Personalized ventilation systems allow reducing viral
aerosol transmission risk.
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AOMO/THUTE/IbHASA UHOOPMALIUA

Bknap aBrtopos. [1.B. AbpamkuHa — 0630p nmuTepaTypsl, cobop
W aHanu3 UTepaTypHbIX UCTOYHUKOB, HanWCaHWe TeKCTa U pefaK-
TUpOBaHMe cTaTbk; B. BepMa — 0630p nutepatyphl, cbop 1 aHanm3
JTEPATYPHbIX UCTOYHWMKOB, MOArOTOBKA M HAaNMcaHWe TeKCTa CTaTbi.
Bce aBTOpbI MOATBEPKAAKOT COOTBETCTBME CBOErO aBTOPCTBA MEXK-
AyHapoaHbIM KpuTepmsaM ICMJE (Bce aBTOpbI BHEC/M CYLLECTBEH-
HbIA BKMA B pa3paboTKy KOHLENUMK, NpoBefeHue 1ccnefoBaHus
W NOLrOTOBKY CTaTby, MPOYIM U OA0OpPUIM BUHAMbHY0 BEpCUio
nepen nybnukaumen).

WUcTounuk duHaHcupoBaHua. ABTOpbI 3asBNAIOT 06 OTCYTCTBMM
BHELLIHEro UHaHCMPOBaHUS NPY NPOBEAEHNM UCCNEe0BaHs
KoHdnukT nmHTepecoB. ABTOpLI [JEKNAPUPYIOT OTCYTCTBUE ABHbIX
1 NoTeHUManbHbIX KOHQIMKTOB MHTEPECOB, CBA3aHHBIX C Mybnuka-
LMeln HacTosLLLEN CTaTbu.
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