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ABSTRACT

BACKGROUND: Logistic regression is the most commonly used method for establishing statistical relationships between
quantitative predictors X and a dichotomous response Y (Y=0 or Y=1). Therefore, it is relevant to develop new approaches to the
analysis of relationships between X and Y of this type.

AIM: To demonstrate the specific characteristics of the application of stratification, moving average and cumulative probability
function methods in the construction and analysis of logistic regression models in the context of health risk assessment.
MATERIALS AND METHODS: The analysis of logistic regression models employs a range of statistical methods, including the
stratification, moving average, cumulative probability function, goodness-of-fit tests, and proportion comparison tests.
RESULTS: It is shown that the standard stratification methods are not sufficient for exploring the nature of the relationships
between dichotomous Y and quantitative X. Additional methods, including moving average and cumulative likelihood function,
facilitate the identification of features characterizing these relationships. The utility of graphical representations of logistic
regression results in elucidating the statistical relationships between variables X and Y is demonstrated. The efficacy of
the stratification, moving average and cumulative probability function methods is illustrated by examples from the field of
epidemiology.

CONCLUSION: The combination of moving average and cumulative probability function methods with stratification enables the
reliable identification of the nature of the relationship between dichotomous Y and quantitative X, as well as the potential for
deviations from the conditions of applicability of logistic regression models.

Keywords: logistic models; model adequacy; statistical significance; stratification; moving average; cumulative probability
function; cardiovascular diseases; thyroid diseases.
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AHHOTALMA

06ocHoBaHUe. MeTofbl TOMCTUYECKOI perpeccuy ABNSAIOTCA Haubonee UCMONb3yeMbIMU A1S YCTAHOBJIEHWUA CTAaTUCTUYECKUX
CBA3eM MeXAy KONMYEeCTBEHHbIMU NpeanKTopamMu X U AUXoToMUYecKuM oTKMKoM Y (Y=0 unam Y=1). UIMeHHo nosToMy pas-
paboTKa HOBbIX MOAXOL0B K aHaNN3y CBA3eN MeXay X M Y TaKoro Tuna sIBNSETCA aKTyasbHOM.

Llenb. lMoka3aTb ocobeHHOCTW NpUMeHEHUs MeTofoB CTPaTUdUKaLMKM, CKONb3ALLEro CPedHero U GyHKUMM KyMynsTUBHOM
BEPOSATHOCTW NpX NMOCTPOEHUM W aHann3e MoZefen JIOMCTUYECKO perpeccum B 3afiadax OLEHKW pUCKa 3L,0pOBbI0.
Marepuanbl u MeToAbl. [1ng aHanu3a Mofeneit NOrUCcTUHECKON Perpeccun MCNosb3yoTCA METOLbI CTPAaTUGUKALIMK, CKOMb3SA-
LLero cpeAHero, QyHKLUMM KyMYNATUBHONM BEPOSTHOCTY, @ TaKXKE KPUTEpPUM COrlacus U MeTOLbl CPaBHEHNS [ONEN.
Pesynbtartbl. [10Ka3aHo, YTO CTaHAAPTHbIE METOAbI CTPATUGMKALMM HEAOCTaTOUHbI 1S OLEHKU XapaKTepa CBS3el Mexny
LMXOTOMMYECKUM Y W KonuuecTBeHHbIM X. [lononHuTeNbHbIE METOABI (CKONb3siLLee cpeaHee U GyHKUMA KyMYNsTUBHOMN Be-
POSATHOCTW) MO3BONSIOT BbIABUTL OCODEHHOCTM 3TWX CBA3eil. [MoKa3aHa posib rpadMuyecKoro NpeAcTaBneHus pesynbTaTos
JIOTUCTUYECKOW perpeccun s NOHUMaHWs CTaTUCTMYECKUX CBA3el Mexay nepeMeHHbiMW X u Y. Pesynbtatel npuMeHeHus
MeTOL0B CTpaTM(GMKALMK, CKONb3ALLEr0 CPeAHEro M QYHKUMU KyMYNSTUBHOW BEPOSTHOCTW WMIOCTPUPYIOTCA NpUMepamm
13 obnacTv anuaemMuonorum.

3aknioueHue. MeToabl CKONb3ALLErO CpeaHero U GYHKUMW KyMYNSTUBHON BEPOATHOCTU B COYETaHUM CO CTpaTMdMKaLMen
N03BONIAIOT HAJEKHO UAEHTUMLIMPOBATL XapaKTeP CBA3N MEXAY AMXOTOMUYECKMM Y M KONIMYECTBEHHBIM X U BbISIBUTH BO3-
MOXXHble OTKJIOHEHMS OT YCNIOBUW MPUMEHUMOCTU MOZENEN NOTUCTUYECKON Perpeccuy.

KnioueBble cnoBa: Mojenu NOrUCTUYECKON perpeccun; apeKBaTHOCTb MofAesn; CTaTUCTUYeCKaa 3Ha4YUMMOCTb;
CTpaTMd)VIKaUMFI; CKOJb34lLlee cpefHee; dJYHKLlMﬂ KYMyﬂﬂTMBHOVI BEPOATHOCTK; CepAeYHO-COCYyAUCTbIe 3aboneBaHus;
3aboneBaHMs LUTOBUAHOM Hene3bl.
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BACKGROUND

Ayvazyan et al. [1, 2] proposed two applications of logistic
regression models (LogR) in epidemiology: as a method for
evaluating relationships (e.g., determining model coefficients,
calculating odds ratios, and determining confidence intervals)
and classifying data (e.g., constructing a classification ma-
trix, calculating sensitivity and specificity, and performing a
receiver operating characteristic [ROC] analysis). This paper
only discusses LogR as a method for evaluating relation-
ships. Using LogR for this task requires an assessment of
model adequacy for the primary data, as well as a mandatory
assessment of statistical significance.

Terminology

Primary data are epidemiological data collected for each
study participant (i.e., each worker or patient). Primary data
may include information such as the health status of each
worker or patient (0, healthy; 1, ill), age, body mass index
(BMI), and hemoglobin. Stratification is the division of prima-
ry data into intervals (strata). For example, age can be divid-
ed into the following strata: 20-24 years, 25-29 years, etc.
In these age-based strata, the average values of all primary
parameters of interest can be calculated. These characteris-
tics include health status, mean BMI, and mean hemoglobin
level. The moving average uses the same stratification, but
with overlapping strata. For example, the age of 20-24 years
for stratum 1, 21-25 years for stratum 2, and 22-26 years
for stratum 3.

LogR models (and other statistical models) require two
types of testing. The first type verifies the model's adequacy
for the primary data. The second type verifies the statistical
significance of the model if it has been deemed adequate.

Model adequacy

Afifi and Eizen [3] provided the clearest definition for ad-
equacy criterion for statistical models: “By adequacy of the
simple linear model, we mean that no other model signifi-
cantly improves the prediction of ¥.” This definition describes
linear regression models that relate quantitative variables
(predictor X and response Y). However, this criterion of model
adequacy applies to any statistical model. The authors pro-
pose such a strict definition of model adequacy [3] that is
impossible to achieve fully because of the large number of
various models that can be constructed using specific prima-
ry data. Furthermore, criteria for improving Y predictions are
often undefined [1].

From a practical standpoint, the proposal by Ayvazyan
et al. seems more realistic (again: their approach involves
linear regression, but all proposals are applicable to LogR).
According to Ayvazyan et al. [1], the adequacy criteria cannot
answer whether the hypothetical relationships being tested
are the best or the most correct ones. They confirm or reject
the consistency of the regression function type being tested
based on the available primary data. In our paper, we further
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consider the adequacy of LogR models based on their consis-
tency with the primary data. However, it is important to note
that the strict model adequacy criterion proposed by Afifi and
Eisen [3] can be used to understand the term adequacy of a
statistical model.

Statistical significance of models

The statistical significance of a LogR model confirms that
the relationship between X and Y is non-random at a level of
significance a [1, 3, 4]. Adequacy and statistical significance
of a model are two different concepts related to different
aspects of constructing and analyzing statistical models.

Logistic regression
LogR is one of the most common nonlinear regres-
sion models. It is used to describe statistical relationships
between a dichotomous response variable Y (Y takes two
values: ¥=0 or Y=1) and quantitative or rank predictor vari-
ables X. This type of data is commonly evaluated in epide-
miological studies, where a dichotomous variable Y may
indicate whether a patient has a disease or nor, whereas
variable X may indicate whether a patient has a risk factor for
a disease or not. It is generally accepted that Y=1 indicates
the presence of a disease in a particular patient, whereas Y=0
indicates its absence.
In the LogR model, the statistical relationship between Y
and a single predictor X is assumed to be as follows [5-7]:
exp(by*b,x)

W(Y=1|X=x)=

= ' |
T+exp(by+b,X) M

where: W(Y=1|X=x), probability of detecting Y=1 in the primary
data given X=x.
Ratio (7) provides the following:

W
ln(m)=b0+blx. @)

When condition (1) is met, there is a linear relationship
between predictor X and complex In(W/(1-W)), known as
logit (W) [5-8].

Ratio (2) indicates the applicability of the LogR model.
LogR typically has no specific limitations regarding the type of
predictor X (quantitative or rank) [5]. Therefore, many authors
believe it can be used wherever a dichotomous response Y
exists. Examples of such publications are provided below.
However, this is not true. First, in addition to LogR, there
are other techniques of analyzing dichotomous responses Y,
e.g., probit regression [9]. Secondly, for this type of specific
epidemiological data, any relationship W(Y=1|X) between the
dichotomous Y and predictor X is possible. Therefore, test-
ing condition (2) is mandatory when using LogR to evaluate
relationships. When condition (2) is met, the impact of pre-
dictor X on probability W is characterized by the odds ratio
(OR). When X changes by one unit, the OR is calculated using
the following formula: OR=exp(b1), where b, is the coefficient
of model (2). The OR is a value that is the same for any X
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only if condition (2) is met (a LogR model is characterized
by a single value!). This is why OR is used in LogR rather
than relative risk, which is common in many works on risk
assessment [10]. If logit(W) is not a linear function of X, then
for different X, OR will be different and the LogR model will no
longer be characterized by a single OR value. Therefore, it is
crucial to first confirm the linearity of the relationship between
X and Y before using OR to characterize X’s impact on V.

This paper discusses LogR models with one predictor
(simple LogR models). Multiple regression models should be
considered separately. Additionally, the paper considers only
quantitative predictors X for which stratification and moving
average calculation are possible in LogR.

Adequacy and statistical significance of logistic
regression models

Adequacy of a LogR model should be tested by calculat-
ing goodness-of-fit tests for stratified primary data, such as
X* a Hosmer—Lemeshow test [5]:

AH-L)=¥ (Wabs,i_ Wcu[c,i)z
X K K Wcalc,i“_Wcalc,i) ,

where: the summation (index i) is performed by strata; n,
Wys.» and W, ; are the number of cases in a stratum, the
actual and estimated probabilities, respectively; W, ; prob-
ability is the mean dichotomous response Y in stratum i
containing n; observations, and W,,; is the value calculat-
ed using the formula (7) for the mean X in stratum i. If the
Hosmer—Lemeshow chi-squared (x?) test for the stratified
primary data does not exceed the critical X%, V), the
model is considered adequate for the primary data at a giv-
en significance level a (v is the number of degrees of free-
dom). Adequacy testing is especially important when using
the LogR model to evaluate relationships. Adequacy testing
is the only way to guarantee the linearity of logit(W) for the
LogR model. If the model appears to be adequate, it is logical
to assess its statistical significance.

The statistical significance of the log R model is tested
using either the t-test or the Wald test [5]. For a single pre-
dictor X, this is the way to determine the significance of the
difference of coefficient b, from zero or the difference of the
OR from 1 using formulas (1)—(2).

The study aimed to demonstrate how stratification tech-
niques, the moving average, and the cumulative probability
function can be used to construct and analyze LogR models
for epidemiological tasks.

MATERIALS AND METHODS

The work illustrates the application of the above tech-
niques using primary data from three sources: 1) Data from
the monograph by Hosmer and Lemeshow [5]: 100 patients
aged 20-69 years, some of them were diagnosed with
cardiovascular disease (CVD); 2) Data from [11, 12], which
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present the results of preventive examinations of 820 male
Ural enterprise workers aged 25-66 years who were diag-
nosed with CVD and had available body mass index (BMI);
3) Data from [13, 14], which present the results of an exam-
ination of 100 postmenopausal women aged 51-79 years,
who were diagnosed with various concomitant diseases, in-
cluding thyroid disease.

A statistical analysis of the data was performed using
LogR models, stratification, a moving average, a cumulative
probability function, a goodness-of-fit test, and proportion
comparison techniques. Statistica 10.0 (StatSoft, USA) was
used for calculations.

RESULTS

Specific epidemiological cases illustrate the analysis of
LogR models using raw, stratified, or moving average data.
Each case illustrates the specific application of stratification
and the moving average methods for evaluating statistical
relationships between dichotomous response Y and quanti-
tative predictor X in various contexts.

Case 1. Rates of cardiovascular disease by age

Primary data. Fig. 1 shows the LogR estimates based
on the primary data from the paper by Hosmer and Leme-
show [5]. Y represents the presence or absence of CVD in
100 patients: Y=0 indicates the absence of CVD and Y=1 indi-
cates the presence of CVD in a patient of a given age.

As shown in Fig. 1, the data does not evaluate the extent
to which ratios (1)-(2) are met. The presence of only two Y
values (0 and 1) precludes any visual (expert) assessment
of the relationship between Y and X [7], in contrast to linear
regression [3, 4, 7]. Fig. 1 shows the LogR curve, which was
plotted using a model based on primary data [5] for 100 pa-
tients:

_ exp(=5,309+0,1109xAge)

W(CC3)= :
1+exp(-5,309+0,1109xAge)

(3)

Fig. 1. Raw (obs) data for Y (Y=0 or Y=1 for each of 100 patients,
open circles) and the probability of cardiovascular diseases W(CVD),
calculated based on logistic regression data (solid circles).

calc?
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Fig. 2. Data on cardiovascular diseases in eight age strata: a, probability W; b, logit(W). The solid circles represent the logistic regression results (calc).

The open circles represent the stratification results (obs).

OR=1.117; confidence interval (Cl): 1.065-1.172; p <0.0001.
However, relying solely on a visual analysis of values 0 and 1
in Fig. 1 does not guarantee that the probability of having
CVD W(CVD) is accurately represented by this function.

Stratification. LogR has techniques for testing the linear-
ity of the relationship between logit(W) and X type (2). These
techniques evaluate model adequacy using stratified primary
data. Many popular statistical packages, such as SAS and
SPSS, include options for dividing predictor X into non-over-
lapping strata using a stratification procedure. The program
then calculates statistical goodness-of-fit tests to evaluate
the linearity hypothesis between logit(W) and X, for example
by using the Hosmer—Lemeshow chi-squared test [5]. Al-
though LogR users apply goodness-of-fit tests, they often
only calculate the goodness-of-fit test and p-values without
presenting the results graphically. As demonstrated below,
graphical representation of stratification results is useful and
sometimes provides unexpected findings.

Fig. 2a shows a comparison between the data calculated
using the LogR model and primary data stratified by predic-
tor X. In paper [5], predictor X (patient age) was divided into
8 strata based on age category. The mean age <Age> and
probability W(CVD) were then calculated for each stratum.
The results are shown in Fig. 2a and Fig. 2b. The transfor-
mation from probabilities W (as shown in Fig. 2a) to logit(W)
(as shown in Fig. 2b) results in the conversion of the logistic
curve into a straight line. A visual assessment of the strat-
ified data for logit(W) shows a general linear increase with
age. This is confirmed by statistical testing of the hypothesis
about the linear relationship between logit(W) and age. When
using Hosmer and Lemeshow goodness-of-fit test, the null
hypothesis of linearity is not rejected at the 0.05 significance
level, with x?=0.16 and 6 degrees of freedom (p=0.998).

Uncertainty of stratification. Age category is not the only
possible basis for stratification. For example, Hosmer and
Lemeshow [5] describe different techniques for stratification

D0l https://doiorg/10.17816/humecob42576

predictor X. All stratification techniques involve subjectivity
(uncertainty) because the number of strata and their bound-
aries are chosen arbitrarily. Some statistical packages (SAS,
SPSS, etc.) use stratification into 10 strata with an equal
number of cases per stratum by default. This procedure is
called standard stratification. The results of the stratifica-
tion of the data published by Hosmer and Lemeshow [5] are
shown in Fig. 3.

The LogR-calculated W(CCZ)_,. values in Fig. 3 are the
same as those in Fig. 2a. However, the actual values, which
are obtained by averaging the primary data in the strata, dif-
fer. Clearly, the x>=2.43 for the data in Fig. 3 is smaller than
the critical y2.;(a, v)=15.51 for v=8 degrees of freedom and
a significance level a=0,05. Therefore, the model adequacy
is confirmed (p=0.97 is significantly greater than 0.05), but
X’=2.43 in Fig. 3 is 15 times higher than that in Fig. 2a. This
case illustrates the uncertainty of stratification results, which
can sometimes lead to inconsistent results.

0.9

[
0.8 OO O
[ ]
0.7 [}
0.6
[ ]
0.5 ] O
= °
0.4
[
0.3 O
[ J
0.2 o o W (CC3) obs
[ ] W (CC3) calc
0.1 Q O
0.0
20 25 30 35 40 45 50 55 60 65
Age, years

Fig. 3. Probability W of cardiovascular disease (CVD) depending on age:
Stratification of 100 patients in the paper by Hosmer and Lemeshow [5]
into 10 strata, each with an equal number of patients. For designations,
see Fig. 2.
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Fig. 4. Cardiovascular disease (CVD) data based on moving averages depending on the mean age in strata; averaging window n,=10 (open circles):
a, probability W; b, logit(W). The solid circles represent logistic regression results.

Moving average. If the stratification procedure is uncertain
about the number of strata and their boundaries, the size of
the averaging window is the only subjective parameter of the
moving average. This parameter can be adjusted to achieve
the best visual result [15]. Therefore, stratification uncertain-
ty can be addressed using moving average techniques.

Fig. 4 shows the moving averages for the window of
10 cases, which coincides with the size of the strata in
standard stratification procedure (Fig. 3). The moving aver-
age results cannot be used to perform any model adequacy
tests, such as the Hosmer-Lemeshow test. These results
are more likely to be perceived as an expert’s visual as-
sessment of goodness of fit between the theoretical model
and the observed patterns. Theory predicts strict lineari-
ty of logit(W) depending on age. The findings either con-
firm or reject this linearity for the given data. As shown in
Fig. 4b, the actual data confirms the theoretical linearity of
logit(W). The following result confirms the linearity of log-
it(W). An attempt was made to add higher-order age terms
to the logit(W) formula based on moving average data, but
these terms were found to be statistically insignificant.
Goodness of fit between the moving average results and
the primary data is confirmed by goodness of fit between
a logit(W) expression based on the moving average data
(open circles in Fig. 4b) and a LogR expression based on
the primary data (Fig. 1, equation 3). For a moving aver-
age, logit(W)=-5.658+0.1183xAge. For the primary data (3),
logit(W)=-5.309+0.1109xAge.

Conclusion for Case 1. The adequacy of the LogR model
is tested using different stratification methods that produce
different results (stratification uncertainty). Uncertainty can
be reduced to some extent by using moving average tech-
niques. The results of the moving averages show that, in this
example, the W, probabilities of CVD detection are consis-
tent with the LogR-based W, (Fig. 4a). Logit(W) is also a
linear function of age (Fig. 4b).

D0l https://doiorg/10.17816/humecob42576

Case 2. Incidence rates of cardiovascular
disease by body mass index

Primary data. The case evaluates the statistical rela-
tionship between CVD rates and BMI in 820 male industrial
workers aged 25-66 years in the Sverdlovsk region. The
presence or absence of CVD was coded as 1 or 0 (a di-
chotomous variable in LogR). The quantitative predictor of
BMI ranged 17.1-41.6 kg/m? The actual data were taken
from [11, 12].

Testing the model adequacy by stratification. Using stan-
dard stratification, 820 participants were divided into 10 stra-
ta of 82 each. The Hosmer—Lemeshow chi-square goodness-
of-fit test was 7.93 with 8 degrees of freedom, which is less
than the critical y2_,;, of 15.51 for a significance level a=0.05.
Therefore, the null hypothesis about the adequacy of the
LogR model was not rejected (p=0.471). Therefore, the LogR
model is considered adequate for the actual data and can be
used to evaluate the relationship between CVD rates and BMI,
including calculating OR.

The graphical results of the stratification are presented in
Fig. 5a and Fig. 5b. As shown in Fig. 5b, the relationship be-
tween the observed logit(W) and BMI (open circles) appears to
be linear. However, there are occasional deviations from the
straight line representing the LogR estimates (solid circles).

The LogR equation, constructed using the primary data
from 820 workers, is as follows: (p <0.0001 for all coefficients):

logit(W)=—4.6642+0.1554xBMI;
OR=1.168 (CI: 1.126-1.212). )

The regression plotted for the actual values of logit(W),
which were obtained by stratifying the primary data into
10 strata (open circles in Fig. 5b), was as follows:

logit(W)=—4.6467+0.1545xBMI. @)

This is essentially the same as ratio (4). Attempts to
include BMI nonlinear terms (quadratic and cubic) in equa-
tions (4) and (5) revealed their statistical insignificance.
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Fig. 5. Cardiovascular disease (CVD) data based on stratification of 820 workers into 10 strata with an equal number of workers per stratum using body

mass index (BMI): a, probability W; b, logit(W). For designations, see Fig. 2.

As shown in Fig. 5a, the LogR estimates indicate that
W(CCC),,. increases monotonically with an increase in BML.
The stratification results for low BMIs in the first three stra-
ta showed that the probability of W, did not increase with
higher BMIs. The question is what range of BMIs corresponds
to a low probability of CVD. This question arises from in-
consistent stratification results. The stratification results
cannot answer this question. However, another technique,
the cumulative probability function, can be used to evaluate
statistical relationships.

Cumulative probability function. The cumulative probabil-
ity function CUSUM,(X) for the response Y by predictor X is
determined by the following ratio:

CUSUM,,C(X)=n]Ti=Z1y, (6)
where: nc, the number of objects included in the function
(this paper uses CUSUM abbreviation because Statistica for
Windows has a built-in function with the same name and
purpose). The cumulative probability function (6) is calcu-
lated as follows. First, the values of predictor X are ordered
in ascending order. Then, the corresponding Y values are
summed, as shown in equation (). As a result, the first value
of the CUSUM, (X function is Y,, corresponding to the mini-
mum X. The second value of the CUSUM,(X) function is equal
to half of the sum of the ¥, and Y, values corresponding to
the two minimum X values. The last point of the CUSUM func-
tion is the CVD rate in the full sample, which is calculated by
summing all ¥ values and dividing by the number of objects in
the sample. The CUSUM function has one feature. When the
number of nc terms in sum (6) is small, i.e., for the initial re-
gion of the CUSUM function, a sharp conversion occurs when
a new term is added. As nc increases, the CUSUM function
becomes smoother. This smooth region can be used for a
CUSUM analysis to draw conclusions.
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Fig. 6 shows a CUSUM plot for CVD incidence in 820
workers with a BMI ranging 17.1-41.6 kg/mZ. In this graph, a
point with a specific BMI* value indicates the mean CVD rate
on the ordinate axis in participants with BMI ranging from the
minimum to the specified BMI*. For example, when BMI is
24.0 kg/m? (with a range 17.1-24.0 kg/m?, 254 participants),
the CUSUM value is 0.202. Therefore, among 254 participants
with BMI <24.0 kg/m?, CVD rates were quite low (0.202). In
participants with BMI >24.0 kg/m?, CVD rates increased sig-
nificantly and remained at a level of at least 0.2. The last
CUSUM function value for maximum BMI is 0.376. This value
was obtained by dividing the number of participants with CVD
(308) by the total number of participants (820).

Based on this information, a new stratification procedure
was performed. Some strata include BMI values less than
24 kg/m?, whereas others include BMI values >24 kg/m?.
Table 1 and Fig. 7 show the results.

As shown in Table 1, 254 participants (quite a lot) had
BMI <24 kg/mZ. Therefore, the BMI range was divided into
3 strata, each with relatively low CVD rates based on the
actual W, data. The BMI range >24 kg/m? was divided into
6 strata, 4 of which (strata 4-7) had a range of 2 kg/mZ.
Stratum 8 included the BMI range 32-34.5 kg/mZ. The cutoff
BMI of 34.5 kg/m? was selected using the CUSUM procedure
with a descending BMI order for CUSUM calculation. With this
cutoff BMI in stratum 9 (BMI >34.5 kg/m?), high CVD rates
were recorded, equal to W(CVD),,.=0.794. This rate was sig-
nificantly higher than W(CVD)=0.690 in stratum 9 with stan-
dard stratification, as shown in Fig. 5.

Graphical representation. Fig. 7 shows that with
BMI >24 kg/m?, the estimated and actual CVD rates were
concordant. This means that OR=1.168 (Cl: 1.126-1.212), cal-
culated by the LogR method using equation (4), was only true
for BMI >24 kg/mZ. Using OR=1.168 for BMI <24 kg/m? would
misinterpret the effect of BMI on CVD rates.




Exologiya cheloveka (Human Ecology)

OPUIMHATBHOE VCCNEAOBAHME Vol 31 (9) 2024
0.40 0.28
omo® @ O °F 0.26
0.35 024
0.30 0.22
0.20
0.25 -~ 018
8 3
Q 0.16
S o020 Q
z = 0.14
E 0.15 g 01
24 ° @ 010 o

o =] 8

0.10 T O 0.08 &
0.06

& 3
0.05 0.04
0.00| omo 0.02

0.00 oomo
-0.05 -0.02
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 16 18
BMI, kg/m?
a

20

22 24 26 28
BMI, kg/m?

b
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Table 1. CUSUM stratification scheme

sratam | oot BM1 | e | | teaton st reresson
] 171-1999 1870 32 0219 0146
2 00-19 2103 8 0217 0.198
3 20-39 20 139 0201 0253
; 260-599 2495 150 0327 0313
5 260-2199 2689 123 039 0381
6 280-2999 2888 133 0.459 0.456
7 00-319 3104 75 0520 0541
8 20-3449 3306 51 0588 0617
9 3.5+ 37,03 3% 079 0751

Note. BMI, body mass index.

Conclusion for Case 2. Standard stratification into 10
strata, each containing an equal number of cases, shows
that the LogR model adequately fits the primary data (the
Hosmer—Lemeshow goodness-of-fit test yielded a value
significantly lower than the critical value for a significance
level of a=0.05). Graphical representation of the stratifica-
tion results shows the possibility of differences between
the stratification results and the LogR estimates in the ini-
tial strata. Due to the uncertainty of the stratification pro-
cedure, the use of a CUSUM cumulative probability function
was proposed to confirm conclusions about the relationship
between CVD and BMI. The CUSUM procedure with an as-
cending BMI order confirmed that there was no increase
in CVD rates when BMI increased from the minimum to
24 kg/m?Z. In this BMI range, CVD rates remained constant-
ly low at W=0.20. The CUSUM procedure with a decreasing
BMI order revealed a BMI range of 34.5 kg/m? with a high
W(CVD) of 0.794, which the standard stratification did not
show. Therefore, using the CUSUM function allows for more
precise stratification to identify the relationship between

D0l https://doiorg/10.17816/humecob42576

W(CVD) and BMI. Such stratification revealed that the pri-
mary data are consistent only with the LogR estimates for
BMI >24 kg/m?.
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Fig. 7. Probability W of cardiovascular diseases (CVD) based on the
stratification results shown in Table 1.
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Case 3. Prevalence rates of thyroid disease
and bmi

This case demonstrates that, even when the criteria for
LogR applicability are met, its results can differ significantly
from the primary data. The moving average procedure is the
only way to identify this difference.

The LogR model was constructed using data from 100
postmenopausal women aged 51-79 years. Among other
things, anthropometric parameters and prevalence rates of
various medical conditions were determined for these wom-
en. The data were collected from the Research Institute for
Maternal and Child Health in Yekaterinburg, Russia [13, 14].
The case evaluates the relationship between the prevalence
of thyroid disease in women and their BMI. Thyroid diseases
were coded as 0 if a woman did not have a disease, and as
1if she did. BMI ranged 19.7-30.9 kg/m?.

Stratification: adequacy testing of a LogR model. Fig. 8a
shows the stratification results. These data were used to cal-
culate the Hosmer—Lemeshow goodness-of-fit test in order
to assess the linearity of the relationship between the log-
it(W) for thyroid disease and the BMI predictor. When the BMI
predictor was divided into 10 strata with an equal number of
cases, the hypothesis of logit(W) linearity was not rejected
(chi-squared Hosmer—Lemeshow test x% = 9.89, which was
significantly lower than the x?.;, for 8 degrees of freedom at
the significance level a = 0.05. Therefore, we can use LogR
to evaluate the relationship between thyroid gland prevalence
rates and BMI.

Primary data. Using the LogR technique to assess the pri-
mary data shows that the regression coefficient b, = 0.00995
in the relationship like (2) is not statistically significantly dif-
ferent from zero (p = 0.877). Therefore, the use of statis-
tical tests only concluded that the LogR technique used in
this case, when the criteria for its applicability were met,
did not show a statistically significant relationship between
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W(thyroid gland) and BMI. As for the graphical representation
of the stratification results (Fig. 8a), the validity of such a
conclusion no longer appears clear.

Moving average. Moving average techniques were used
to more reliably assess the statistical relationship between
BMI and the probability of thyroid disease. The moving av-
erage window, which was determined using the cumulative
probability function, included 21 patients. The result shown
in Fig. 8b differs from LogR estimates (W, in Fig. 8a) and
from the standard stratification results (W, in Fig. 8a). Was
there a statistically significant relationship between BMI
and W(thyroid)? The statistical significance of differences
in W(thyroid gland) for different BMI values was evaluated
using the moving average data (Fig. 8b). The strata with the
minimum and maximum W(thyroid gland) were compared.
Stratum 1 in Fig. 8b (peak rate of W=0.476) included women
with a BMI ranging 19.7-24.8 kg/m?, with a mean BMI of
22.1 kg/m?. In stratum 25 (range: 25.3-27.3 kg/m% mean
BMI=26.5 kg/m?), prevalence rates for thyroid disease were
low (W=0.143). Strata 1 and 25 each contains 21 cases and
did not overlap. When a two-sided test was used to com-
pare proportions for independent samples, differences be-
tween W=0.476 and W=0.143 were statistically significant
(p=0.0195). In stratum 80, which included women with a BMI
ranging 29.6-30.9 kg/m? (mean BMI=29.8 kg/m?), the prev-
alence rate of thyroid diseases was W=0.429. The difference
with stratum 25 was also statistically significant (p=0.0404).
Therefore, a statistically significant relationship was revealed
between the prevalence rate of thyroid disease and BMI,
which could not be described by a logistic function like (7).

Fig. 8b appears to be an outlier, resulting from a ran-
dom combination of unusual factors and a rare exception to
a typical pattern. However, this is not true. The analysis of
the causes of the unusual representation of Fig. 8b revealed
the following: Let <x,> and <x,> be the mean values of pre-
dictor X in groups Y=0 and Y=1, respectively, and let o,? and

0.50
o)
0.45
000 0o @
0.40
© o anco
w 0.35
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§ 0.30
@
= o 0O o@ O
0.20 o
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b

Fig. 8. Data on thyroid diseases: a, probability W based on the stratification of 100 patients into 10 strata (open circles), solid circles represent logistic
regression results; b, relationship of probability W with body mass index (BMI) for moving averages (moving average window + 21, total of 80 strata).
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0,2 be variances X in the same groups. Then, if <x;>=<x,> and
o2#0,%, diagrams like Fig. 8b are logical. Moreover, Fig. 8b
with a decline in the center is obtained when a,2 >g;’. If
0,% <a,?, Fig. 8b demonstrates a peak in the center. Note
that diagrams like Fig. 2 (linear logit) could be obtained when
<xX>#<x;> and 0,%=0 2.

Conclusion for Case 3. Even if the LogR model meets
the goodness-of-fit test, the actual data can be radically in-
consistent with the model. This is especially true when the
model proves to be statistically insignificant. The statistical
insignificance of the model may be caused by the logit(W)
deviation from linearity. In some cases, the model can be
considered adequate for the actual data. The above case
shows that such situations are possible.

DISCUSSION

The criteria for logit linearity should be met to correct-
ly use the LogR for evaluation of the statistical relationship
between the dichotomous response Y and the quantitative
predictor X (i.e., the adequacy of the LogR model should be
tested). A review of publications on the use of LogR in epi-
demiological studies reveals that most of them did not test
the adequacy of the model [16, 17]. There are a few rare ex-
ceptions. For example, Konyrtaeva et al. [18] tested both the
adequacy (using the Hosmer—Lemeshow test) and statistical
significance of the LogR model.

The absence of tests for the adequacy of logR models in
many publications is difficult to explain because such tests are
mandatory in all fields of mathematical statistics to ensure
concordance between theory and actual data. For example,
before presenting data as a mean and standard deviation, it is
necessary to test whether the actual data are adequate for a
normal distribution [19]. In addition, when using the t-test to
compare the mean values of X in two independent samples,
the normality of X data in the samples should be first tested,
and only then the statistical significance of the difference in
means should be assessed. However, many authors do not
consider it mandatory to test the logR model for adequa-
cy. Nevertheless, testing the LogR model for adequacy does
more than confirm or reject the model. It also evaluates the
statistical relationship between the dichotomous Y and the
quantitative X based on the available data.

As mentioned above, the adequacy and statistical signif-
icance of the LogR model are two distinct concepts. Some
authors confuse adequacy with significance. For example,
in their educational paper, Peng et al. [8] proposed that “re-
jecting such a null hypothesis [H, : b,=0] implies that a linear
relationship exists between X and the logit of Y.!”

This statement is incorrect. In fact, rejecting the null hy-
pothesis H, : b;=0 means that, an equation like (2) for logit(W)

! “Within the framework of inferential statistics, the null hypothesis states
that b1 equals zero, or there is no linear relationship in the population.
Rejecting such a null hypothesis implies that a linear relationship exists
between X and the logit of Y" [8].
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contains a linear term for X, though it may also contain non-
linear terms for X. If logit(W) contains nonlinear terms, it is
impossible to use OR as a parameter for the relationship be-
tween dichotomous Y and quantitative X. Linearity of Logit(W)
can only be guaranteed by testing the model for adequacy,
not by statistical significance of b.

It should be noted that adequacy testing is critical when
using LogR to evaluate relationships. This is necessary to
ensure that the estimated OR accurately reflects the actual
situation. If a LogR model is used for classification (predic-
tion) and yields high sensitivity and specificity results, then
it is not mandatory to test it for adequacy. The most import-
ant thing is that the model can accurately predict outcomes,
regardless of how the prediction rule is obtained. In some
works [17], the LogR model is used in both capacities simul-
taneously. In these cases, adequacy testing is important for
correctly interpreting the OR.

The benefits of diagrams. This paper demonstrates that
relying solely on statistical criteria can lead to incorrect LogR
conclusions. For example, goodness-of-fit tests may not re-
ject the hypothesis of a linear relationship between predic-
tor X and logit(W), whereas graphical analysis clearly shows
a nonlinear relationship (see Case 3). Prominent experts
such as Tukey and Siegel actively promoted graphical rep-
resentation for statistical results. In his paper [4], American
statistician Andru Siegel illustrates almost every conclusion
with graphs and detailed comments. John Tukey [20], one of
the founders of modern data analysis, wrote, “Pictures that
emphasize what we already know ... are frequently not worth
the space they take. Pictures that have to be gone over with
a reading glass to see the main point are wasteful of time
and inadequate of effect. The greatest value of a picture is
when it forces us to notice what we never expected to
see” (the text was emphasized by the author). Figures 3, 7,
and especially 8 show exactly what we did not expect to see.

Let us discuss benefits of diagrams again. The null hy-
pothesis of logit(W) linearity was considered true, if the
probability of rejecting it increased with an increase in the
number of cases. For example, if there were 100 patients in
case 1, then the null hypothesis would not be rejected with a
high probability. If the number of patients increased from 100
to 650, then the null hypothesis of logit(W) linearity (which
was based on the standard stratification results presented
in Fig. 3) would be rejected at a significance level a=0.05,
maintaining all relationships between age and the probability
of CVD. This is the so-called oversampling effect [1], which
results in the rejection of any null hypothesis if enough cases
are available [1, 21]. This is another reason to use the LogR
diagrams for expert assessment of logit(W) linearity, espe-
cially if the number of cases is really large.

CONCLUSION

In all of the above cases where the statistical relation-
ship between the dichotomous response Y and quantitative
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predictor X was evaluated, the hypothesis that the LogR
model adequately describes the actual data was not reject-
ed. Therefore, the use of the LogR model is justified. How-
ever, the LogR results were completely different in three
cases. In case 1, the artificial database model demonstrated
complete goodness of fit between the model and the data.
In case 2, some regions of the predictor values deviated from
the LogR model, though the model and the actual data were
generally concordant. In case 3, the actual data demonstrated
a non-linear and even non-monotonic relationship between Y
and X. However, the Hosmer—Lemeshow goodness-of-fit test
identified the logR model (linear for X) as an adequate for the
actual data. Any differences between the LogR models and
the actual data can be identified using stratification, moving
averages, and cumulative probability functions, as well as
graphical representations and analyses of the results.
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AOMO/JHUTE/IbHAA UHDOOPMALIUA

Bknap aBtopoB. A.H. BapakcuH — wmpes v KoHuenums uccnenosa-
HWS, aHaNM3 AaHHbIX, HanucaHue TekcTa, 10.B. LanaymoBa — co3paHue
KOMMbKOTEPHBIX MPOrpaMM [J1s pacyéTa CKOMb3ALLEro CpeaHero v QyHK-
UMU KyMYNATUBHOW BEPOSITHOCTU, aHanM3 AaHHbIX, HanMcaHue TeKCTa,
T.A. MacnakoBa — aHanu3 AaHHbIX, pabota ¢ NUTepaTypHbIMK UCTOYHM-
KaMmu, HanucaHue TeKcTa. Bce aBTOpbl NOATBEPXKAAIOT COOTBETCTBME CBO-
ero aBTOpPCTBa MexayHapoaHbiM kputepusam ICMJE (Bce aBTopbl BHeC/
CYLLLECTBEHHBIN BKNAL B pa3paboTKy KOHLEeNUMW, NpoBeAeHue uccneno-
BaHWA ¥ MOArOTOBKY CTaTbi, NPOYNM U 0Lobpunn dUHambHY0 Bepcuio
nepen nybnuKaumen).

JdTuyeckas 3kcneptusa. [lpoBedeHue uccnefoBanua ogobpe-
HO NOKafbHbIM 3TyeckuM KomuteToM WM3 YpO PAH (npoTokon Ne3
ot 05.06.2023).

WcTounnku duHaHcupoBaHMA. ViccnefoBaHye BbINOSHEHO B COOTBET-
cTBuM ¢ ['ocyaapcTBeHHbIM 3aaaHremM 1 nnadoM HAP M3 YpO PAH 3a cuét
cybenanii MuHobpHayku Poceuiickoi OefiepaLiny Ha BbINOMHEHWE Hay4HOM
TeMbl FUMN-2024-0002 v ['ocypapcTtBeHHbIM 3aaaHvem 1 nnaHoM HUP V13-
PuXX YpO PAH 3a cuét cybenamin MuHobpHaykm Poccuitckoin Oepepatimm
Ha BbIMO/HeHWe Hay4uHoM Tembl AAAA-A19-119111990097-4.

PackpbiTie MHTepecoB. ABTOPLI 3asBNAIOT 06 OTCYTCTBUW OTHOLLIEHWIA, fie-
ATEbHOCTM W MHTEPECOB 3a MOCNeiHWE TPW rofia, CBA3aHHbIX C TPETbUMM
JmLaMy (KOMMEPYECKUMM U HEKOMMEPYECKVMM), UHTEPECH! KOTOPbIX MOTYT
BbITb 3aTPOHYTHI COAEPIKAHMEM CTaTbU.

OpuruHanbHocTb. [lpy CO3aHWMM HacTosLLEel paboTkl aBTOPLI He MCMob-
30Ba/nu paHee onybiMKoBaHHbIE CBEAEHMUS (TEKCT, UAMIOCTPaLWMY, AaHHbIE).
HocTyn K AaHHBIM. PefjaKLyOHHas NOUTMKA B OTHOLLEHUM COBMECTHOMO
MCMONb30BaHUs AaHHbIX K HacTosLLe paboTe He MPUMeHMMA, HoBble AaH-
Hble He cobupany 1 He co3aaBani.

leHepaTMBHbIW UCKYCCTBEHHDbIN MHTENNeKT. [lpy Co3[aHUK HacTosLLeN
CTaTb TEXHONOMMM FeHePaTUBHOMO UCKYCCTBEHHOMO HTENNEKTA He UCMOb-
30Bam.

PaccMoTpenue u peueHsupoBanue. Hactosias paboTa nofaHa B xyp-
Han B MHWULMATMBHOM NOPAJKE W PaccMOTPeHa No 06bIYHOM MpoLesype.
B peLieH3MpoBaHWM y4acTBOBaNM [Ba BHELLHUX PeLeH3eHTa, YeH pefaK-
LIWYIOHHOW KOMMIernu 1 HayuHbIA pefaKTop U3faHws.
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