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ABSTRACT
The number of environmental factors simultaneously affecting the human body is extremely large. Tracking these factors in time 
has become possible thanks to the development of artificial intelligence technologies, including machine learning algorithms, 
deep learning algorithms, and generative artificial intelligence. The integration of this new generation of technological solutions 
into biomedical sciences enables the identification of hidden interdependencies among studied elements and processes that 
were previously overlooked. In the context of research on the mechanisms of human adaptation and maladaptation, special 
attention should be given to exogenous hypoxia as one of the most significant environmental factors studied within ecology, 
physiology, and clinical medicine. The topic of individual markers of human resistance to hypoxia remains open and is regularly 
addressed in physiological and pathophysiological works. In recent works, methods of machine and deep learning have already 
found wide application, including the analysis of multimodal physiological data. For example, a machine learning model has 
been developed to predict the development of acute mountain sickness with a sensitivity of 0.998 and a specificity of 0.978. The 
model was trained using physiological indicators of test subjects and real-time climate data. Thus, the application of artificial 
intelligence tools for scientific research planning, data processing, and the creation of predictive models significantly expands 
the current understanding of physiological mechanisms of human adaptation to hypoxia and enables the analysis of other 
environmental factors to be carried out at a new technological level.
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АННОТАЦИЯ
Количество факторов внешней среды, воздействующих на человека одномоментно, чрезвычайно велико. Отслежива-
ние их в динамике стало возможно благодаря развитию технологий искусственного интеллекта, включая алгоритмы 
машинного обучения, глубокого обучения и генеративный искусственный интеллект. Внедрение данного спектра тех-
нологических решений нового поколения в медико-биологические науки позволяет обнаруживать неявные взаимоза-
висимости исследуемых элементов и процессов, упускаемые ранее. В контексте исследований механизмов адаптации 
и дезадаптации человека особое внимание следует уделить экзогенной гипоксии как одному из наиболее значимых 
факторов внешний среды, исследуемых в рамках экологии, физиологии и клинической медицины. Тема индивидуаль-
ных маркеров устойчивости человека к гипоксии до сих пор остаётся открытой и регулярно освещаемой в физиоло-
гических и патофизиологических работах. В последних методы машинного и глубокого обучения уже нашли широкое 
применение, включая анализ мультимодальных физиологических данных. Например, разработана модель машинно-
го обучения, прогнозирующая развитие острой горной болезни с чувствительностью 0,998 и специфичностью 0,978. 
Для обучения модели использовались физиологические показатели испытуемых и климатические данные, фиксиру-
емые в режиме реального времени. Таким образом, применение инструментов искусственного интеллекта для пла-
нирования научных исследований, обработки полученных данных и создания прогностических моделей существенно 
расширяет горизонт актуального понимания физиологических механизмов адаптации человека к гипоксии и позволя-
ет на новом технологическом уровне подойти к анализу других факторов внешней среды.
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摘要摘要

在同一时刻作用于人体的环境因素数量极为庞大。随着人工智能技术的发展，特别是机器学

习、深度学习以及生成式人工智能算法的广泛应用，动态监测这些因素已成为可能。新一代

人工智能解决方案在医学-生物学研究中的引入，使得研究者能够识别出此前未被发现的研

究要素与生理过程之间的隐性相互关系。在探讨人类对环境适应与失调机制的研究背景下，

外源性低氧应作为生态学、生理学及临床医学中最重要的环境因素之一被重点关注。个体对

低氧耐受的标志物仍是一个开放性议题，至今仍频繁出现在生理学和病理生理学研究中。机

器学习和深度学习方法已被广泛应用于该领域，尤其是在多模态生理数据的分析方面。例

如，研究人员已构建出一种预测急性高原病发生的机器学习模型，其灵敏度达0.998，特异

性为0.978。该模型基于受试者的生理参数与实时采集的气候数据进行训练。因此，在科研

设计、数据处理和预测建模过程中应用人工智能工具，显著拓宽了对人体低氧适应生理机制

的当前认识，并使我们能够在新的技术层面上开展对其他环境因素的分析。

关键词：关键词：人工智能；环境因素；低氧；机器学习；适应。
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INTRODUCTION
Artificial intelligence (AI) technologies have become cen-

tral to the emerging sixth technological cycle. The impact of 
new tools on scientific research across diverse fields cannot 
be overstated. According to an analytical report on publica-
tion activity, from 2019 to 2023 the number of publications by 
Russian authors at A*-level AI conferences increased by 70%, 
and the economic effect of AI implementation is projected to 
reach tens of trillions of rubles by the end of the decade [1]. 
AI also holds immense potential in the biomedical sciences. 
For instance, it is used to analyze medical images—such as 
X-rays, CT scans, and MRIs—for the early detection of dis-
eases. A novel direction enabled by AI technologies includes 
virtual assistants and wearable devices that collect health 
data from patients and assist in the management of chronic 
diseases [2]. AI is applicable not only in clinical practice but 
also in fundamental research. The analysis of large data-
sets accelerates the development of new drugs and delivery 
systems. Artificial intelligence capabilities are actively be-
ing utilized in the Russian healthcare system. For example, 
the TOP-3 and AIDA services have been integrated into the 
medical information system to support general practitioners 
in diagnosing patients, with the cumulative number of con-
firmed final diagnoses already exceeding 1.3 million [3]. 
The development of next-generation clinical decision sup-
port systems has become possible due to the emergence of 
generative AI technologies, which are applied across a wide 
spectrum of medical tasks—from the analysis of electronic 
health records to medical education, drug development, and 
scientific research [4–7]. In Russia, generative AI is also ad-
vancing rapidly in the medical domain. For example, in Feb-
ruary 2024, the large language model GigaChat successfully 
passed the final state examination in the specialty 31.05.01 
General Medicine at the V.A. Almazov National Medical Re-
search Centre [8].

This paper focuses on the integration of AI technologies 
into research projects related to the study of human physio-
logical functions. Some attempts have already been made to 
summarize the existing applications of machine learning in 
various physiological research methods [9]. However, due 
to the rapid development of AI, up-to-date reviews of the 
current state of this direction are especially valuable.

KEY DIRECTIONS IN THE DEVELOPMENT 
OF ARTIFICIAL INTELLIGENCE 
TECHNOLOGIES: MACHINE  
AND DEEP LEARNING

Modern AI development is marked by the rapid evolution 
of methods and approaches applied across diverse fields—
from medicine and pharmacology to natural language pro-
cessing and computer vision. In this work, we focus on 
analyzing three key directions in AI development: machine 

learning, deep learning, and generative AI. Although these 
technologies share common origins, they differ substantially 
in their architectural principles, learning methods, and practi-
cal implementation, which makes them applicable to solving 
different classes of problems.

Machine learning, as a classical approach, is based on 
statistical models and feature engineering, enabling effec-
tive work with structured data and the integration of expert 
knowledge [10]. However, its limitations in processing com-
plex unstructured data and its dependence on feature quality 
have driven the development of more advanced methods. 
Deep learning, based on multilayer neural networks, has 
revolutionized the processing of unstructured data—such 
as images, audio, and text—due to its ability to automati-
cally extract hierarchical features. In the context of deep 
learning, neural networks are hierarchical architectures 
capable of extracting multilevel features from data through 
multiple hidden layers. Each layer transforms the input data 
using linear and nonlinear operations, allowing the model 
to learn complex dependencies and patterns in the data. A 
foundational publication in the field of deep learning is the 
article by LeCun et al. [11]. Nevertheless, its high demands 
for computational resources and data, as well as the “black 
box” problem, remain significant limitations. Generative AI, 
representing the next stage in AI evolution, focuses on the 
creation of new data and solutions. This opens the door to 
creative applications such as image and text generation and 
even the design of new materials, all made possible by a new 
neural network architecture—transformers [12]. However, 
this direction also presents its own challenges, including the 
complexity of managing large parameter sets and ensuring 
the feasibility of the generated outcomes.

Each of these directions addresses specific tasks—from 
working with structured data and extracting hierarchical fea-
tures to generating new data and solutions. The combination 
of these methods constitutes the generalized concept of AI, 
where each technology complements and enhances the capa-
bilities of the others despite their inherent limitations. Thus, 
AI is an integrative discipline that brings together diverse 
methods and approaches to solve a broad range of prob-
lems. A comparative table of the AI technologies discussed 
above—machine learning, deep learning, and the distinct 
features of generative AI—is presented below (Table 1).

ARTIFICIAL INTELLIGENCE  
AS A DISRUPTIVE TECHNOLOGY  
IN MEDICAL AND BIOLOGICAL SCIENCES

Application of Artificial Intelligence  
in Clinical Practice

Computer vision is the first AI technology to be widely ad-
opted in clinical practice. Using neural networks, physicians 
can quickly identify pathological changes, estimate their size 
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and volume, and determine the most probable diagnosis [13]. 
Automated medical image analysis is already widely used in 
diagnostic radiology to detect retinal diseases, identify melano-
ma and other skin tumors, identify and classify malignant cells 
in histological sections, detect colon polyps during colonosco-
py, and perform automated ECG interpretation [14–19]. In the 
Russian Federation, the MosMedAI project enables all medical 
institutions nationwide to submit radiological studies for AI-
based processing to support clinical decision-making. As of the 
end of 2023, over 250,000 studies had been processed [20].

Natural language processing is the second major group 
of AI technologies widely used in medicine. A patient’s elec-
tronic health record contains a vast amount of medical infor-
mation that may influence physician decision-making. A sig-
nificant portion of this information is free-text data describing 
symptoms, examination findings, and diagnostic conclusions. 
Machine learning models for natural language processing are 
capable of analyzing large amounts of unstructured data and 
drawing conclusions [21]. Natural language processing in 
electronic health records is used to determine the onset of 
allergic diseases, identify patients at high risk of developing 
asthma based on clinical notes and laboratory data, automat-
ically extract cancer-related information, and detect a history 
of delirium [22–24]. In Russia, several AI-based services for 
processing medical records have received regulatory approv-
al and are used in clinical settings, including AIDA, TOP-3, 
Webiomed, and MedicBK.

The main challenge for AI in this domain lies in support-
ing clinical decision-making regarding interventions, order-
ing diagnostic tests, and making a clinical diagnosis. With 
the advent of multimodal AI systems capable of processing 
numerous parameters, medicine now has the opportunity 
to develop recommendation systems that take into account 
chronic diseases, sex, age, results of laboratory and instru-
mental studies, and social determinants of health [25, 26].

Application of Artificial Intelligence  
in Molecular Biology

Deep learning models are capable of identifying complex 
patterns in high-dimensional data, making them especially 
useful in omics research. Hwang et al. [27] trained a genomic 
language model (gLM) to predict protein function based on 
genomic information, classify genomic sequences, and iden-
tify co-regulated gene modules such as bacterial operons. 
The model was validated on the E. coli K-12 genome and 
demonstrated an absolute accuracy of 59.2%. This study is 
unique as it was the first to show that deep learning models 
can capture “context” within nucleotide sequences using the 
same algorithms employed in language processing.

In another study, the machine learning model Methyl-
BoostER effectively predicted the pathomorphological sub-
type of renal tumors based on DNA methylation profiles [28]. 
On a test dataset, the model achieved a prediction accuracy 
of 0.960. Such high accuracy indicates that, following vali-
dation in clinical trials, this model could be used to assess 
patient prognosis preoperatively.

AI has also transformed and accelerated the drug discov-
ery process. Until 2021, researchers lacked a tool capable 
of predicting the three-dimensional structure of a protein 
based on its amino acid sequence. That changed when Goo-
gle DeepMind researchers developed the artificial intelligence 
model AlphaFold, which solved this problem with high pre-
cision [29]. This innovative tool marked a breakthrough in 
chemistry and molecular biology, earning its creators the 
Nobel Prize in Chemistry in 2024. That same year, Na-
ture published an article introducing AlphaFold 3 [30]. The 
updated model can accurately predict the structures of pro-
teins, nucleic acids, small molecules, and modified residues, 
and it can also model protein–ligand interactions. The root-
mean-square deviation in structure prediction is less than 

Table 1. Comparison of machine learning, deep learning and generative artificial intelligence

Aspect Machine Learning Deep learning Generative artificial Intelligence

Computational 
approach

Utilizes feature engineering 
and statistical models 
Requires variable 
computational resources

Employs multilayer neural networks for 
hierarchical feature extraction Requires high 
computational power and large datasets

Applies techniques such as variational 
autoencoders and generative adversarial 
networks to model the data generation 
process

Learning 
mechanisms

Uses supervised, 
unsupervised, and 
reinforcement learning  
on structured data

Applies backpropagation and deep reinforcement 
learning to large sets of raw data

Involves adversarial and variational 
probabilistic learning using large,  
domain-specific datasets

Practical 
implementation

Integrates expert knowledge 
via engineered features, but 
may miss novel patterns

Performs well on unstructured data (e.g., image 
recognition, natural language processing),  
but lacks transparency (“black box”)

Generates novel multimodal content:  
text, images, videos, and more

Advantages Ease of interpretation 
and integration of expert 
knowledge

High performance in handling complex 
unstructured data

Ability to generate new data and solve 
complex tasks without task-specific 
training

Limitations Limited in capturing complex 
patterns; heavily reliant  
on feature quality

High computational and data requirements,  
low interpretability

High training cost; requires massive 
datasets for learning

https://academic.oup.com/eurheartj/article/42/46/4717/6371908
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0.2 nanometers. Today, neural network models are widely 
used in the pharmaceutical industry to identify molecular 
targets, screen candidate molecules, and predict their phar-
macokinetic and pharmacochemical properties [31].

PROSPECTS FOR APPLICATION  
OF GENERATIVE ARTIFICIAL 
INTELLIGENCE IN HEALTHCARE

Large language models, such as GPT (Generative Pre-
trained Transformer), have become important tools in health-
care and have enabled new scenarios for physician–patient 
interaction. Trained on vast amounts of textual data, these 
models successfully pass various formats of medical exam-
inations. In a 2023 study, the large language model ChatGPT 
surpassed the passing threshold on the United States Medical 
Licensing Exam (USMLE), and in February 2024, the GigaCh-
at model passed the state certification exam in the General 
Medicine specialty [32]. AI chatbots that generate text in re-
sponse to user queries are capable of optimizing physicians’ 
workflows. ChatGPT-4, having received a transcript of a doc-
tor–patient consultation, is able to summarize the conversa-
tion and generate a structured medical note [33]. In December 
2024, Sechenov University and Neuromed LLC announced clin-
ical trials of an AI assistant for cardiologists [34]. The AI assis-
tant generates visit notes and discharge summaries, provides 
access to drug reference information, offers diagnostic and 
treatment recommendations based on current clinical guide-
lines, and automatically assesses individual patient risks.

Large language models also hold promise for delivering 
psychological support. In 2022, the AI-enabled psychother-
apeutic platform Wysa was approved by the FDA for use in 
patients with musculoskeletal pain, anxiety, and depression, 
following evidence from a cohort study [35]. The study in-
cluded 153 participants divided into three cohorts: the first 
cohort received no psychological support; the second cohort 
received at least one in-person counseling session; and the 
third cohort was given access to a digital platform featuring 
a mobile chatbot powered by a neural network that provid-
ed cognitive behavioral therapy. In addition to the chatbot, 
patients could also receive remote consultations from spe-
cialists via the platform. In the group with access to Wysa, 
symptom scores for depression and anxiety improved by 2.8 
to 3.7 points compared with the group that received no psy-
chological counseling. Physical function, as measured by the 
PROMIS questionnaire, improved by 2.4 points in the Wysa 
group compared with the traditional counseling group.

ARTIFICIAL INTELLIGENCE TOOLS  
IN PHYSIOLOGICAL RESEARCH

AI is becoming an essential tool in studying the patho-
genesis of pathological conditions. Machine learning models 

can analyze millions of scientific articles and identify com-
plex relationships, thereby synthesizing scientific data in a 
more comprehensive and less biased manner. Wei et al. [36] 
used machine learning models to identify overlaps in the mo-
lecular pathophysiology of Alzheimer disease, amyotrophic 
lateral sclerosis, and frontotemporal dementia. Specifically, 
machine learning methods were applied to compare and re-
veal shared molecular mechanisms among these diseases. 
To this end, a semantic knowledge network, SemNet 2.0, 
was built based on over 33 million biomedical publications. AI 
models identified the most significant nodes in the network 
related to each disease using a machine learning–based 
ranking algorithm. These nodes represented protein mole-
cules playing a key role in the pathogenesis of the diseas-
es. This scientific data mining approach makes it possible 
to identify the most promising directions in the study of the 
pathogenesis of Alzheimer disease, amyotrophic lateral scle-
rosis, and frontotemporal dementia.

Researchers in the field of physiology also use AI to un-
cover new relationships between genotype and phenotype 
in various pathologies. Asencio et al. [37] applied a machine 
learning model to process temporal features of cardiac con-
tractions and classify different types of sarcomere patho-
logical changes based on these characteristics. Using this 
model, the researchers achieved an accuracy of 78.5 ± 0.1% 
in classifying sarcomere mutations. This study demonstrates 
the potential of AI for investigating the mechanisms of car-
diomyopathy associated with various mutation types.

Neural networks are widely used to detect physiological 
signals under pathological conditions. Peng et al. [38] de-
scribed a model based on nasal airflow pressure and blood 
oxygen saturation (SpO₂) for detecting apnea and hypopnea ep-
isodes. According to the researchers, integration of data from 
electrocardiography, electroencephalography, and body move-
ment patterns may enable the development of even more 
accurate diagnostic systems for obstructive sleep apnea.

AI can also serve as a tool for identifying “red flags” to 
predict life-threatening events (such as cardiac arrest, sep-
sis, hemorrhagic shock, or respiratory failure) by analyzing 
large volumes of human physiological data [39]. AI technol-
ogies are facilitating the development of novel methods for 
studying physiological processes. Cai et al. [40] demonstrat-
ed the effectiveness of AI-based velocimetry for the quantita-
tive assessment of blood flow velocity and shear stress. The 
researchers successfully combined imaging, experimental 
data, and physical principles using neural networks, enabling 
automated analysis of experimental data and extraction of 
key hemodynamic indicators. These findings allow for the 
investigation of processes occurring in vessels affected by 
microaneurysms.

Pretrained language models may have a sufficiently high 
level of knowledge in physiology to be applied in education. 
In a study by Soulage et al. [41], the large language model 
ChatGPT-3.5 performed better on a physiology exam than 
most medical students enrolled in a physiology course. Large 

ОБЗОРЫ 
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language models trained on physiology content may become 
effective tools for educating students. Potential educational 
use cases for ChatGPT include generating introductory mate-
rial for complex topics, creating self-assessment questions, 
developing study plans, and finding additional resources [42].

APPLICATION OF ARTIFICIAL 
INTELLIGENCE IN STUDYING THE IMPACT 
OF ENVIRONMENTAL FACTORS  
ON HUMAN HEALTH

Until recently, most studies on childhood obesity exam-
ined the impact of external factors only at a single level of 
the socioecological model (e.g., individual or community lev-
el) [43]. Investigating the combined effects of environmental, 
social, and individual factors on obesity had been a chal-
lenging task prior to the advent of machine learning tools. 
Allen et al. [44] used the random forest method as a machine 
learning algorithm, which is commonly applied in studies of 
gene–gene interactions. The study confirmed the hypothesis 
that young individuals with similar levels of education and 
family wealth have varying risks of obesity depending on the 
economic and educational resources available in their neigh-
borhoods. The model also revealed that environmental pollu-
tion significantly influences obesity development in children 
from low-income families. However, machine learning meth-
ods require further study and interpretation, as the models 
used cannot establish the mechanisms behind the identified 
associations. One fundamental issue is model interpretability. 
Most AI models function as “black boxes,” making it impos-
sible to determine the specific decision-making algorithms 
used by neural networks.

Ojha et al. [45] investigated the influence of urban environ-
mental factors on physiological responses using machine learn-
ing models. Thirty study participants, equipped with wearable 
sensors (Empatica E4) and backpacks containing environmen-
tal monitoring devices—measuring noise levels, temperature, 
humidity, light intensity, and particulate matter concentration—
moved through the city. The wearable devices recorded electro-
dermal activity, which reflects arousal levels and is commonly 
used in neurophysiological research to assess the impact of 
external stimuli. In retrospective analysis, a binary classification 
algorithm predicted participants’ arousal states with a sensitivity 
of 0.89 and specificity of 0.84. Using a deep learning algorithm, 
the researchers identified patterns of how external factors trig-
ger arousal: sounds exceeding 66 dB, low light levels (<580 lux), 
and temperatures above 22 °C were most frequently associated 
with physiological arousal. The researchers used a self-orga-
nizing map (SOM) clustering model to group participants based 
on the degree of their reactivity to environmental changes. The 
researchers confirmed that machine learning can automate the 
analysis of complex interactions among multiple factors and ac-
curately predict physiological responses to stimuli across differ-
ent population groups. The main limitation of the study was the 

low quality of electrodermal activity data, which contained a large 
amount of noise and artifacts, leading to the exclusion of data 
from 10 out of 30 participants from the analysis.

In addition to retrospectively analyzing the impact of envi-
ronmental factors on human health, AI can process real-time 
data. This tool can be used to investigate how sudden en-
vironmental changes affect the functional state of the hu-
man body and to detect pathological changes. Wei et al. [46] 
demonstrated the high efficacy of machine learning methods 
in predicting the risk of high-altitude hypoxia by analyzing 
real-time individual physiological parameters and environ-
mental factors. The AI system analyzed heart rate, heart rate 
variability, blood oxygen saturation, and environmental fac-
tors (ambient temperature, atmospheric pressure, relative 
humidity, and ascent rate). Based on these inputs, 25 ma-
chine learning algorithms were trained and tested. The most 
accurate model achieved a sensitivity of 0.998 and specificity 
of 0.978 in diagnosing mild acute mountain sickness.

Wearable devices equipped with biosensors that track 
environmental conditions and physiological parameters are 
routinely used in medicine, particularly in sports medicine. 
Shen et al. [47] described biosensors for noninvasive mea-
surement of lactate levels, the elevation of which serves as 
a marker of hypoxia due to a metabolic shift toward anaer-
obic glycolysis. For example, electrochemical sensors can 
measure the electrical current generated during lactate 
oxidation by enzymes (e.g., lactate oxidase or lactate dehy-
drogenase) and convert it into lactate concentration. These 
sensors can operate across a wide range of concentrations 
(from micromolar to millimolar levels) and are characterized 
by high accuracy. Potentiometric sensors register changes 
in the electric potential at the electrode depending on lactate 
concentration, whereas impedance sensors detect variations 
in resistance or capacitance resulting from the interaction of 
lactate with the biosensing layer. Optical biosensors detect 
optical signal changes (such as fluorescence intensity or col-
orimetric shifts). For instance, hydrogen peroxide generated 
during enzymatic oxidation of lactate reacts with chromogen-
ic substrates (e.g., tetramethylbenzidine), leading to a color 
change measurable by a smartphone camera or portable 
spectrometer. Semiconductor biosensors, such as field-ef-
fect transistors and organic electrochemical transistors, 
detect changes in channel conductivity upon lactate binding 
to a bioreceptor (e.g., an enzyme). These are especially sen-
sitive to low lactate concentrations and can be integrated 
into flexible substrates. Self-powered biosensors, such as 
piezoelectric devices, convert mechanical energy (e.g., body 
movement) into electrical signals modulated by lactate con-
centration. Biofuel cells generate current from lactate oxi-
dation, with current magnitude correlating to lactate levels. 
As the number of biosensors increases, the amount of avail-
able data also grows, enabling the assessment of functional 
body status and informing lifestyle modifications, therapeu-
tic decisions, and disease risk evaluation. Kimball et al. [48] 
described a machine learning model that incorporates both 

REVIEW
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physiological and environmental parameters to predict the 
development of hypovolemia. Physiological inputs included 
photoplethysmography, electrocardiography, seismocardiog-
raphy, as well as cardiac output, stroke volume, heart rate, 
blood pressure, skin and core temperature, total peripheral 
resistance, and blood volume. Such technologies are espe-
cially relevant for athletes and military personnel subjected 
to high physical loads and varying environmental conditions.

The use of neural networks to predict pathological con-
ditions is currently an area of active research. However, AI 
has yet to find widespread application in the study of human 
adaptation to altered environmental conditions. Training such 
algorithms requires the accumulation of physiological data 
collected under hyperbaric conditions and during states of 
hypo- and hyperoxia. These studies could help identify phys-
iological parameters that respond positively to training in 
such environments. Thus, the development of AI may lead to 
new discoveries in sports medicine.

Despite its promising potential, several limitations cur-
rently hinder the widespread implementation of AI in stud-
ies of environmental effects on the human body. Machine 
learning algorithms used in existing research are effective at 
identifying correlations but cannot reliably explain why cer-
tain environmental factors elicit specific responses. At pres-
ent, most machine learning models can be used to generate 
hypotheses but not to verify them. Developing interpretable 
models remains a major challenge for future research in hu-
man physiology [49].

Most studies to date have involved small sample sizes, 
as noted by the researchers themselves. The development 
of accurate predictive models necessitates a large number 
of labor-intensive experiments simulating altered environ-
mental conditions. It is essential to maintain a balanced dis-
tribution of environmental conditions and subject groups to 
ensure that the training data are sufficiently representative. 
In addition, biosensors used to detect physiological changes 
are often susceptible to noise and artifacts, which significant-
ly complicates research in this domain.

PROSPECTS FOR APPLICATION OF 
ARTIFICIAL INTELLIGENCE TECHNOLOGIES 
IN RESEARCH ON HUMAN HYPOXIC 
POTENTIAL UNDER EXTREME CONDITIONS

Hypoxic potential refers to the human body’s ability to 
adapt to conditions of reduced oxygen availability—such as 
high-altitude environments, intense physical exertion, or oth-
er extreme situations. Studying hypoxic adaptation is import-
ant for medicine, sports, space biology, and other scientific 
domains. Within the field of adaptive medicine, interest in 
machine learning models is only beginning to grow, and the 
number of published studies is still minimal.

Machine learning models can be used to design personal-
ized training programs that account for individual responses 

to hypoxic stress. This is particularly important in elite sports, 
where even small improvements can be decisive. In one 
study [50], a machine learning model was developed based 
on selected physiological parameters (red blood cell count 
and hemoglobin concentration) collected from 64 profes-
sional speed skaters who underwent a 10-week training 
program (3 weeks of baseline training at sea level, 4 weeks 
of hypoxic training, and 3 weeks of recovery). The machine 
learning model demonstrated higher accuracy in assessing 
physiological variables compared with a polynomial model 
and enabled the development of an effective system for pre-
dicting physiological changes under hypoxic training based on 
baseline sea-level measurements.

Beyond sports medicine, AI is also applied in aviation. In 
another study [51], researchers explored the use of wearable 
sensors and machine learning algorithms to enable early de-
tection of hypoxia and prevent in-flight emergencies. As part 
of the experiment, 85 participants underwent a two-phase 
study in which they used aviation masks that regulated ox-
ygen supply. The participants performed cognitive tests and 
flight simulations whereas the oxygen level was gradually 
reduced to simulate high-altitude ascent. The data collected 
via dry EEG electrodes were processed using machine learn-
ing algorithms, and the extracted features of brain activity 
were transformed. The machine learning models showed 
high sensitivity (0.83 to 1.00) and specificity (0.91 to 1.00) in 
detecting hypoxia. This research highlights major progress in 
developing real-time systems for in-flight hypoxia detection.

Mazing et al. [52] demonstrated machine learning mo-
dels' ability to detect tissue hypoxia during reduced inspired 
oxygen levels and to assess individual hypoxia tolerance. 
Using an optical sensor, the researchers measured tissue 
hypoxemia in participants. The collected data were used to 
train a self-organizing map (SOM), a type of neural network 
used to uncover hidden patterns and cluster objects into 
groups. As a result, the model divided the participants into 
three groups with differing levels of hypoxia tolerance and 
functional physiological states. This study demonstrates the 
feasibility of creating a simple, reproducible test to assess 
individual hypoxia tolerance based on neural networks.

The use of AI models in the study of hypoxic adaptation 
mechanisms represents a promising area of research. Ma-
chine learning models can serve as tools for processing and 
analyzing large datasets, identifying latent patterns, and pre-
dicting individual responses to hypoxic exposure. For exam-
ple, there are still no precise and clearly defined parameters 
that allow for an objective assessment of a person’s hypoxia 
tolerance during a hypoxic test. Many additional parameters 
may indirectly help to complete the picture of an individu-
al’s hypoxia tolerance [53]. Numerous contentious questions 
remain concerning the selection of an intermittent hypoxic 
stimulation regimen, such as the oxidative and inflamma-
tory processes induced by intermittent hypoxic training [54, 
55], and the involvement of reactive oxygen species during 
recovery [56, 57].

ОБЗОР 
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The undeniable advantages of AI-based approaches for 
detecting hypoxia lie primarily in their ability to rapidly pro-
cess multimodal data—such as biosensor readings from 
wearable devices (lactate, SpO₂, heart rate, heart rate vari-
ability) and environmental parameters (temperature, humid-
ity, atmospheric pressure), among others—and to identify 
complex patterns within these data. Traditional approaches 
would require predefined hypotheses and lengthy statistical 
processing, along with preprocessing to enable data com-
parability. This paper described earlier how neural networks 
can process unstructured data—such as EEG, ECG, micro-
circulation images, and examples of nasal airflow and SpO₂ 
analysis for apnea detection—which would not be feasible 
using standard polysomnography due to its high cost and 
interpretive complexity.

AI applications in this field are likely to offer new per-
spectives on data related to hypoxia tolerance, the imple-
mentation of adaptive mechanisms at molecular and system-
ic levels, and the interrelationships among these processes.

CONCLUSION
The modern environment is characterized by numerous 

simultaneously acting external factors, the impact of which 
on the human body can now be monitored thanks to advanc-
es in AI, such as machine learning algorithms, deep learn-
ing, and generative models. These technologies open new 
frontiers in the biomedical field, enabling the identification 
of hidden relationships between elements and processes. Of 

particular importance is the study of exogenous hypoxia—
one of the key environmental factors explored in ecology, 
physiology, and clinical medicine. Questions concerning in-
dividual tolerance to hypoxic conditions remain highly rel-
evant and are actively discussed in the scientific data. Con-
temporary research increasingly employs machine learning 
and deep learning methods to analyze multidimensional 
physiological data. The application of these methods in the 
planning of scientific experiments, data analysis, and the de-
velopment of predictive models significantly improves our 
understanding of human adaptation mechanisms to hypoxia 
and facilitates further investigation into the effects of other 
environmental factors. Ongoing developments demonstrate 
considerable potential for future progress in this area by 
improving the efficiency of research procedures through 
optimized statistical analysis, data processing, and experi-
mental design. A particularly important direction of research 
involves the study of human adaptive capacity, wherein the 
development of classification models to distinguish groups 
with differing levels of stress resilience holds relevance for 
various fields, including medicine, biology, and psychology. 
The creation of predictive models for assessing hypoxia tol-
erance holds potential for enhancing machine learning meth-
odologies and for addressing applied challenges in clinical, 
aerospace, and space medicine. However, several limitations 
hinder the widespread use of AI in adaptation studies, includ-
ing difficulties in acquiring sufficient data, the limited quality 
of biosensors, and the lack of interpretable machine learning 
models for studying environmental factors.

REVIEW
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