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ABSTRACT

The number of environmental factors simultaneously affecting the human body is extremely large. Tracking these factors intime
has become possible thanks to the development of artificial intelligence technologies, including machine learning algorithms,
deep learning algorithms, and generative artificial intelligence. The integration of this new generation of technological solutions
into biomedical sciences enables the identification of hidden interdependencies among studied elements and processes that
were previously overlooked. In the context of research on the mechanisms of human adaptation and maladaptation, special
attention should be given to exogenous hypoxia as one of the most significant environmental factors studied within ecology,
physiology, and clinical medicine. The topic of individual markers of human resistance to hypoxia remains open and is regularly
addressed in physiological and pathophysiological works. In recent works, methods of machine and deep learning have already
found wide application, including the analysis of multimodal physiological data. For example, a machine learning model has
been developed to predict the development of acute mountain sickness with a sensitivity of 0.998 and a specificity of 0.978. The
model was trained using physiological indicators of test subjects and real-time climate data. Thus, the application of artificial
intelligence tools for scientific research planning, data processing, and the creation of predictive models significantly expands
the current understanding of physiological mechanisms of human adaptation to hypoxia and enables the analysis of other
environmental factors to be carried out at a new technological level.

Keywords: artificial intelligence; environmental factors; hypoxia; machine learning; adaptation.

To cite this article:
Balunov 10, Mikhalishchina AS, Venerin AA, Glazachev 0S. Artificial intelligence technologies in biomedical research on human adaptation and maladaptation
to environmental factors. Ekologiya cheloveka (Human Ecology). 2025;32(1):7-19. DOI: 10.17816/humeco643537 EDN: WCVHEG

Received: 28.12.2024 Accepted: 02.04.2025 Published online: 03.05.2025
V-2
ECO®VECTOR The article can be used under the CC BY-NC-ND 4.0 International License

© Eco-Vector, 2025


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17816/humeco643537
https://elibrary.ru/wcvheg
https://doi.org/10.17816/humeco643537
https://elibrary.ru/wcvheg
https://crossmark.crossref.org/dialog/?doi=10.17816/humeco643537&domain=PDF&date_stamp=2025-07-19

0OB30P T.32,N° 1, 2025 JKONOrVIA HenoBeKa

DOI: https://doi.org/10.17816/humeco643537 EDN: WCVHEG

TeXHONOrMM UCKYCCTBEHHOr0 UHTENJIeKTa
B MeJUKO-6M0/1I0rMYecKuX uccneaoBaHUaX
ajanTauuM ¥ aesajanTtaluu yesoBeKa

K pa3fiMyHbiM haKTopaM cpeapbl

1.0. banywos', A.C. Muxanuiumna?, A.A. Benepur?, 0.C. Mnasaues?

! POCCUICKMIA HaLMOHANbHBIN UCCTIE[0BATENLCKUI MeaMUMHCKMIA yHuBepeuTeT M. H.W. Muporosa, Mockea, Poccus;
2 MepBbiit MOCKOBCKMIA rocyAapCTBEHHbIA MeaMUMHCKHIA yHuBepcuTeT uM. WM. CeueHoBa, MockBa, Poccus

AHHOTALMUA

KonuyecTBo (haKTOpOB BHELLHEN Cpefbl, BO3LEHACTBYHOLLMX Ha YesloBEKa 0AHOMOMEHTHO, Upe3BblyaiiHo BesuKo. OTcnexuBa-
HWe UX B AMHAMMKe CTano BO3MOXHO Bnarofaps pasBUTWI0 TEXHONIOMMI UCKYCCTBEHHOMO MHTESEKTa, BKIIOYas anropuTMbl
MaLLMHHOro 00y4yeHus, rnyboKoro 0by4eHUs W reHepaTUBHBIN UCKYCCTBEHHBINA MHTENNEKT. BHeapeHWe fJaHHOMO CrieKTpa Tex-
HOJIOTMYECKUX PELLEHUA HOBOrO NMOKONEHUS B Me[IUKO-0MoIoryeckme HayKku no3sonseT 06HapyuUBaTh HesIBHbIE B3aUMO3a-
BMCMMOCTMW UCCTIEYEMBIX 3/IEMEHTOB M NPOLLECCOB, YNycKaeMble paHee. B KOHTEKCTe uccnej0BaHMii MeXaHU3MOB afianTaLmm
W Le3afanTauum Yenoseka ocoboe BHMMaHWe criedyeT yAenuTb 3K30TeHHOM MMMNOKCUMM KaK 0JHOMY U3 Haubonee 3HaUUMBbIX
(aKTOpOB BHELUHWI CPeAbl, UCC/IelyeMbIX B paMKax 3KOMO0MMM, (U3MCA0rM U KIIMHUYECKOW MeAuLMHbL. TeMa UHAMBMAYasb-
HbIX MapKepoB YCTOAYMBOCTU YENIOBEKA K MMMOKCUM [0 CUX MOP OCTAETCA OTKPbITOM U PErynsipHO OCBELLAeMoN B GU3nono-
MYECKMX W naTouamnonornyeckux pabotax. B nocnegHux MeTofbl MalLMHHOMO M rNY60KOro 0by4eHUs yKe HaLlW LIMPOKoe
NPUMEHEHWE, BKIIOYAs aHalu3 MyNbTUMOAANbHbIX GU3MONOTMYECKMX AaHHbIX. Hanpumep, paspaboTaHa Mofenb MalUMHHO-
ro obyyeHus, NporHo3vpyoLLasa pa3BUTUE OCTPOI ropHoW bonesnm ¢ vyscTBUTENbHOCTBI 0,998 1 cneundmdHocTbio 0,978.
[ns 0byyeHus Mogenn UCnonb3oBaauCh GU3NOIOTMYECKWE NMOKa3aTeNn UCTIBITYEMBIX U KIUMaTUYeCKue faHHble, huKcupy-
eMble B PeXWMe peanbHoro BpeMeHU. TakuM 06pa3oM, NpuMeHeHUe MHCTPYMEHTOB WCKYCCTBEHHOMO MHTENNEKTa Ans nna-
HWUPOBaHWSA Hay4HbIX UCCIef0BaHUI, 06paboTKM MONYYEHHbIX AAHHBIX U CO3AaHMS MPOrHOCTUYECKUX MOAENEeH CyLLeCTBEHHO
PacLUMPSAET roOpU30HT aKTYaslbHOr0 NOHUMaHWA GU3MOMNOTMYECKMX MEXaHM3MOB afianTaLumm YeNoBeKa K TMMOKCUM U No3BoNS-
€T Ha HOBOM TEXHOJIOTMYECKOM YPOBHE MOJOMTU K aHanu3y Apyrux GaKTopoB BHELLHel cpefbl.
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INTRODUCTION

Artificial intelligence (Al) technologies have become cen-
tral to the emerging sixth technological cycle. The impact of
new tools on scientific research across diverse fields cannot
be overstated. According to an analytical report on publica-
tion activity, from 2019 to 2023 the number of publications by
Russian authors at A*-level Al conferences increased by 70%,
and the economic effect of Al implementation is projected to
reach tens of trillions of rubles by the end of the decade [1].
Al also holds immense potential in the biomedical sciences.
For instance, it is used to analyze medical images—such as
X-rays, CT scans, and MRIs—for the early detection of dis-
eases. A novel direction enabled by Al technologies includes
virtual assistants and wearable devices that collect health
data from patients and assist in the management of chronic
diseases [2]. Al is applicable not only in clinical practice but
also in fundamental research. The analysis of large data-
sets accelerates the development of new drugs and delivery
systems. Artificial intelligence capabilities are actively be-
ing utilized in the Russian healthcare system. For example,
the TOP-3 and AIDA services have been integrated into the
medical information system to support general practitioners
in diagnosing patients, with the cumulative number of con-
firmed final diagnoses already exceeding 1.3 million [3].
The development of next-generation clinical decision sup-
port systems has become possible due to the emergence of
generative Al technologies, which are applied across a wide
spectrum of medical tasks—from the analysis of electronic
health records to medical education, drug development, and
scientific research [4-7]. In Russia, generative Al is also ad-
vancing rapidly in the medical domain. For example, in Feb-
ruary 2024, the large language model GigaChat successfully
passed the final state examination in the specialty 31.05.01
General Medicine at the V.A. Almazov National Medical Re-
search Centre [8].

This paper focuses on the integration of Al technologies
into research projects related to the study of human physio-
logical functions. Some attempts have already been made to
summarize the existing applications of machine learning in
various physiological research methods [9]. However, due
to the rapid development of Al, up-to-date reviews of the
current state of this direction are especially valuable.

KEY DIRECTIONS IN THE DEVELOPMENT
OF ARTIFICIAL INTELLIGENCE
TECHNOLOGIES: MACHINE

AND DEEP LEARNING

Modern Al development is marked by the rapid evolution
of methods and approaches applied across diverse fields—
from medicine and pharmacology to natural language pro-
cessing and computer vision. In this work, we focus on
analyzing three key directions in Al development: machine
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learning, deep learning, and generative Al. Although these
technologies share common origins, they differ substantially
in their architectural principles, learning methods, and practi-
cal implementation, which makes them applicable to solving
different classes of problems.

Machine learning, as a classical approach, is based on
statistical models and feature engineering, enabling effec-
tive work with structured data and the integration of expert
knowledge [10]. However, its limitations in processing com-
plex unstructured data and its dependence on feature quality
have driven the development of more advanced methods.
Deep learning, based on multilayer neural networks, has
revolutionized the processing of unstructured data—such
as images, audio, and text—due to its ability to automati-
cally extract hierarchical features. In the context of deep
learning, neural networks are hierarchical architectures
capable of extracting multilevel features from data through
multiple hidden layers. Each layer transforms the input data
using linear and nonlinear operations, allowing the model
to learn complex dependencies and patterns in the data. A
foundational publication in the field of deep learning is the
article by LeCun et al. [11]. Nevertheless, its high demands
for computational resources and data, as well as the “black
box” problem, remain significant limitations. Generative Al,
representing the next stage in Al evolution, focuses on the
creation of new data and solutions. This opens the door to
creative applications such as image and text generation and
even the design of new materials, all made possible by a new
neural network architecture—transformers [12]. However,
this direction also presents its own challenges, including the
complexity of managing large parameter sets and ensuring
the feasibility of the generated outcomes.

Each of these directions addresses specific tasks—from
working with structured data and extracting hierarchical fea-
tures to generating new data and solutions. The combination
of these methods constitutes the generalized concept of Al,
where each technology complements and enhances the capa-
bilities of the others despite their inherent limitations. Thus,
Al is an integrative discipline that brings together diverse
methods and approaches to solve a broad range of prob-
lems. A comparative table of the Al technologies discussed
above—machine learning, deep learning, and the distinct
features of generative Al—is presented below (Table 1).

ARTIFICIAL INTELLIGENCE
AS A DISRUPTIVE TECHNOLOGY
IN MEDICAL AND BIOLOGICAL SCIENCES

Application of Artificial Intelligence
in Clinical Practice

Computer vision is the first Al technology to be widely ad-
opted in clinical practice. Using neural networks, physicians
can quickly identify pathological changes, estimate their size
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and volume, and determine the most probable diagnosis [13].
Automated medical image analysis is already widely used in
diagnostic radiology to detect retinal diseases, identify melano-
ma and other skin tumors, identify and classify malignant cells
in histological sections, detect colon polyps during colonosco-
py, and perform automated ECG interpretation [14-19]. In the
Russian Federation, the MosMedAl project enables all medical
institutions nationwide to submit radiological studies for Al-
based processing to support clinical decision-making. As of the
end of 2023, over 250,000 studies had been processed [20].

Natural language processing is the second major group
of Al technologies widely used in medicine. A patient’s elec-
tronic health record contains a vast amount of medical infor-
mation that may influence physician decision-making. A sig-
nificant portion of this information is free-text data describing
symptoms, examination findings, and diagnostic conclusions.
Machine learning models for natural language processing are
capable of analyzing large amounts of unstructured data and
drawing conclusions [21]. Natural language processing in
electronic health records is used to determine the onset of
allergic diseases, identify patients at high risk of developing
asthma based on clinical notes and laboratory data, automat-
ically extract cancer-related information, and detect a history
of delirium [22-24]. In Russia, several Al-based services for
processing medical records have received regulatory approv-
al and are used in clinical settings, including AIDA, TOP-3,
Webiomed, and MedicBK.

The main challenge for Al in this domain lies in support-
ing clinical decision-making regarding interventions, order-
ing diagnostic tests, and making a clinical diagnosis. With
the advent of multimodal Al systems capable of processing
numerous parameters, medicine now has the opportunity
to develop recommendation systems that take into account
chronic diseases, sex, age, results of laboratory and instru-
mental studies, and social determinants of health [25, 26].
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Application of Artificial Intelligence
in Molecular Biology

Deep learning models are capable of identifying complex
patterns in high-dimensional data, making them especially
useful in omics research. Hwang et al. [27] trained a genomic
language model (gLM) to predict protein function based on
genomic information, classify genomic sequences, and iden-
tify co-regulated gene modules such as bacterial operons.
The model was validated on the E. coli K-12 genome and
demonstrated an absolute accuracy of 59.2%. This study is
unique as it was the first to show that deep learning models
can capture “context” within nucleotide sequences using the
same algorithms employed in language processing.

In another study, the machine learning model Methyl-
BoostER effectively predicted the pathomorphological sub-
type of renal tumors based on DNA methylation profiles [28].
On a test dataset, the model achieved a prediction accuracy
of 0.960. Such high accuracy indicates that, following vali-
dation in clinical trials, this model could be used to assess
patient prognosis preoperatively.

Al has also transformed and accelerated the drug discov-
ery process. Until 2021, researchers lacked a tool capable
of predicting the three-dimensional structure of a protein
based on its amino acid sequence. That changed when Goo-
gle DeepMind researchers developed the artificial intelligence
model AlphaFold, which solved this problem with high pre-
cision [29]. This innovative tool marked a breakthrough in
chemistry and molecular biology, earning its creators the
Nobel Prize in Chemistry in 2024. That same year, Na-
ture published an article introducing AlphaFold 3 [30]. The
updated model can accurately predict the structures of pro-
teins, nucleic acids, small molecules, and modified residues,
and it can also model protein-ligand interactions. The root-
mean-square deviation in structure prediction is less than

Table 1. Comparison of machine learning, deep learning and generative artificial intelligence

Aspect Machine Learning Deep learning Generative artificial Intelligence
Computational Utilizes feature engineering Employs multilayer neural networks for Applies techniques such as variational
approach and statistical models hierarchical feature extraction Requires high autoencoders and generative adversarial

Requires variable computational power and large datasets networks to model the data generation
computational resources process
Learning Uses supervised, Applies backpropagation and deep reinforcement  Involves adversarial and variational
mechanisms unsupervised, and learning to large sets of raw data probabilistic learning using large,
reinforcement learning domain-specific datasets
on structured data
Practical Integrates expert knowledge ~ Performs well on unstructured data (e.g., image Generates novel multimodal content:

implementation via engineered features, but

may miss novel patterns

Advantages Ease of interpretation
and integration of expert unstructured data
knowledge

Limitations Limited in capturing complex

patterns; heavily reliant
on feature quality

low interpretability

recognition, natural language processing),
but lacks transparency (“black box")

High performance in handling complex

High computational and data requirements,

text, images, videos, and more

Ability to generate new data and solve
complex tasks without task-specific
training

High training cost; requires massive
datasets for learning
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0.2 nanometers. Today, neural network models are widely
used in the pharmaceutical industry to identify molecular
targets, screen candidate molecules, and predict their phar-
macokinetic and pharmacochemical properties [31].

PROSPECTS FOR APPLICATION
OF GENERATIVE ARTIFICIAL
INTELLIGENCE IN HEALTHCARE

Large language models, such as GPT (Generative Pre-
trained Transformer), have become important tools in health-
care and have enabled new scenarios for physician—patient
interaction. Trained on vast amounts of textual data, these
models successfully pass various formats of medical exam-
inations. In a 2023 study, the large language model ChatGPT
surpassed the passing threshold on the United States Medical
Licensing Exam (USMLE), and in February 2024, the GigaCh-
at model passed the state certification exam in the General
Medicine specialty [32]. Al chatbots that generate text in re-
sponse to user queries are capable of optimizing physicians’
workflows. ChatGPT-4, having received a transcript of a doc-
tor—patient consultation, is able to summarize the conversa-
tion and generate a structured medical note [33]. In December
2024, Sechenov University and Neuromed LLC announced clin-
ical trials of an Al assistant for cardiologists [34]. The Al assis-
tant generates visit notes and discharge summaries, provides
access to drug reference information, offers diagnostic and
treatment recommendations based on current clinical guide-
lines, and automatically assesses individual patient risks.

Large language models also hold promise for delivering
psychological support. In 2022, the Al-enabled psychother-
apeutic platform Wysa was approved by the FDA for use in
patients with musculoskeletal pain, anxiety, and depression,
following evidence from a cohort study [35]. The study in-
cluded 153 participants divided into three cohorts: the first
cohort received no psychological support; the second cohort
received at least one in-person counseling session; and the
third cohort was given access to a digital platform featuring
a mobile chatbot powered by a neural network that provid-
ed cognitive behavioral therapy. In addition to the chatbot,
patients could also receive remote consultations from spe-
cialists via the platform. In the group with access to Wysa,
symptom scores for depression and anxiety improved by 2.8
to 3.7 points compared with the group that received no psy-
chological counseling. Physical function, as measured by the
PROMIS questionnaire, improved by 2.4 points in the Wysa
group compared with the traditional counseling group.

ARTIFICIAL INTELLIGENCE TOOLS
IN PHYSIOLOGICAL RESEARCH

Al is becoming an essential tool in studying the patho-
genesis of pathological conditions. Machine learning models
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can analyze millions of scientific articles and identify com-
plex relationships, thereby synthesizing scientific data in a
more comprehensive and less bhiased manner. Wei et al. [36]
used machine learning models to identify overlaps in the mo-
lecular pathophysiology of Alzheimer disease, amyotrophic
lateral sclerosis, and frontotemporal dementia. Specifically,
machine learning methods were applied to compare and re-
veal shared molecular mechanisms among these diseases.
To this end, a semantic knowledge network, SemNet 2.0,
was built based on over 33 million biomedical publications. Al
models identified the most significant nodes in the network
related to each disease using a machine learning-based
ranking algorithm. These nodes represented protein mole-
cules playing a key role in the pathogenesis of the diseas-
es. This scientific data mining approach makes it possible
to identify the most promising directions in the study of the
pathogenesis of Alzheimer disease, amyotrophic lateral scle-
rosis, and frontotemporal dementia.

Researchers in the field of physiology also use Al to un-
cover new relationships between genotype and phenotype
in various pathologies. Asencio et al. [37] applied a machine
learning model to process temporal features of cardiac con-
tractions and classify different types of sarcomere patho-
logical changes based on these characteristics. Using this
model, the researchers achieved an accuracy of 78.5 + 0.1%
in classifying sarcomere mutations. This study demonstrates
the potential of Al for investigating the mechanisms of car-
diomyopathy associated with various mutation types.

Neural networks are widely used to detect physiological
signals under pathological conditions. Peng et al. [38] de-
scribed a model based on nasal airflow pressure and blood
oxygen saturation (Sp0.) for detecting apnea and hypopnea ep-
isodes. According to the researchers, integration of data from
electrocardiography, electroencephalography, and body move-
ment patterns may enable the development of even more
accurate diagnostic systems for obstructive sleep apnea.

Al can also serve as a tool for identifying “red flags” to
predict life-threatening events (such as cardiac arrest, sep-
sis, hemorrhagic shock, or respiratory failure) by analyzing
large volumes of human physiological data [39]. Al technol-
ogies are facilitating the development of novel methods for
studying physiological processes. Cai et al. [40] demonstrat-
ed the effectiveness of Al-based velocimetry for the quantita-
tive assessment of blood flow velocity and shear stress. The
researchers successfully combined imaging, experimental
data, and physical principles using neural networks, enabling
automated analysis of experimental data and extraction of
key hemodynamic indicators. These findings allow for the
investigation of processes occurring in vessels affected by
microaneurysms.

Pretrained language models may have a sufficiently high
level of knowledge in physiology to be applied in education.
In a study by Soulage et al. [41], the large language model
ChatGPT-3.5 performed better on a physiology exam than
most medical students enrolled in a physiology course. Large
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language models trained on physiology content may become
effective tools for educating students. Potential educational
use cases for ChatGPT include generating introductory mate-
rial for complex topics, creating self-assessment questions,
developing study plans, and finding additional resources [42].

APPLICATION OF ARTIFICIAL
INTELLIGENCE IN STUDYING THE IMPACT
OF ENVIRONMENTAL FACTORS

ON HUMAN HEALTH

Until recently, most studies on childhood obesity exam-
ined the impact of external factors only at a single level of
the socioecological model (e.g., individual or community lev-
el) [43]. Investigating the combined effects of environmental,
social, and individual factors on obesity had been a chal-
lenging task prior to the advent of machine learning tools.
Allen et al. [44] used the random forest method as a machine
learning algorithm, which is commonly applied in studies of
gene—gene interactions. The study confirmed the hypothesis
that young individuals with similar levels of education and
family wealth have varying risks of obesity depending on the
economic and educational resources available in their neigh-
borhoods. The model also revealed that environmental pollu-
tion significantly influences obesity development in children
from low-income families. However, machine learning meth-
ods require further study and interpretation, as the models
used cannot establish the mechanisms behind the identified
associations. One fundamental issue is model interpretability.
Most Al models function as “black boxes,” making it impos-
sible to determine the specific decision-making algorithms
used by neural networks.

Ojha et al. [45] investigated the influence of urban environ-
mental factors on physiological responses using machine learn-
ing models. Thirty study participants, equipped with wearable
sensors (Empatica E4) and backpacks containing environmen-
tal monitoring devices—measuring noise levels, temperature,
humidity, light intensity, and particulate matter concentration—
moved through the city. The wearable devices recorded electro-
dermal activity, which reflects arousal levels and is commonly
used in neurophysiological research to assess the impact of
external stimuli. In retrospective analysis, a binary classification
algorithm predicted participants’ arousal states with a sensitivity
of 0.89 and specificity of 0.84. Using a deep learning algorithm,
the researchers identified patterns of how external factors trig-
ger arousal: sounds exceeding 66 dB, low light levels (<580 lux),
and temperatures above 22 °C were most frequently associated
with physiological arousal. The researchers used a self-orga-
nizing map (SOM) clustering model to group participants based
on the degree of their reactivity to environmental changes. The
researchers confirmed that machine learning can automate the
analysis of complex interactions among multiple factors and ac-
curately predict physiological responses to stimuli across differ-
ent population groups. The main limitation of the study was the
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low quality of electrodermal activity data, which contained a large
amount of noise and artifacts, leading to the exclusion of data
from 10 out of 30 participants from the analysis.

In addition to retrospectively analyzing the impact of envi-
ronmental factors on human health, Al can process real-time
data. This tool can be used to investigate how sudden en-
vironmental changes affect the functional state of the hu-
man body and to detect pathological changes. Wei et al. [46]
demonstrated the high efficacy of machine learning methods
in predicting the risk of high-altitude hypoxia by analyzing
real-time individual physiological parameters and environ-
mental factors. The Al system analyzed heart rate, heart rate
variability, blood oxygen saturation, and environmental fac-
tors (ambient temperature, atmospheric pressure, relative
humidity, and ascent rate). Based on these inputs, 25 ma-
chine learning algorithms were trained and tested. The most
accurate model achieved a sensitivity of 0.998 and specificity
of 0.978 in diagnosing mild acute mountain sickness.

Wearable devices equipped with biosensors that track
environmental conditions and physiological parameters are
routinely used in medicine, particularly in sports medicine.
Shen et al. [47] described biosensors for noninvasive mea-
surement of lactate levels, the elevation of which serves as
a marker of hypoxia due to a metabolic shift toward anaer-
obic glycolysis. For example, electrochemical sensors can
measure the electrical current generated during lactate
oxidation by enzymes (e.g., lactate oxidase or lactate dehy-
drogenase) and convert it into lactate concentration. These
sensors can operate across a wide range of concentrations
(from micromolar to millimolar levels) and are characterized
by high accuracy. Potentiometric sensors register changes
in the electric potential at the electrode depending on lactate
concentration, whereas impedance sensors detect variations
in resistance or capacitance resulting from the interaction of
lactate with the biosensing layer. Optical biosensors detect
optical signal changes (such as fluorescence intensity or col-
orimetric shifts). For instance, hydrogen peroxide generated
during enzymatic oxidation of lactate reacts with chromogen-
ic substrates (e.g., tetramethylbenzidine), leading to a color
change measurable by a smartphone camera or portable
spectrometer. Semiconductor biosensors, such as field-ef-
fect transistors and organic electrochemical transistors,
detect changes in channel conductivity upon lactate binding
to a bioreceptor (e.g., an enzyme). These are especially sen-
sitive to low lactate concentrations and can be integrated
into flexible substrates. Self-powered biosensors, such as
piezoelectric devices, convert mechanical energy (e.g., body
movement) into electrical signals modulated by lactate con-
centration. Biofuel cells generate current from lactate oxi-
dation, with current magnitude correlating to lactate levels.
As the number of biosensors increases, the amount of avail-
able data also grows, enabling the assessment of functional
body status and informing lifestyle modifications, therapeu-
tic decisions, and disease risk evaluation. Kimball et al. [48]
described a machine learning model that incorporates both
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physiological and environmental parameters to predict the
development of hypovolemia. Physiological inputs included
photoplethysmography, electrocardiography, seismocardiog-
raphy, as well as cardiac output, stroke volume, heart rate,
blood pressure, skin and core temperature, total peripheral
resistance, and blood volume. Such technologies are espe-
cially relevant for athletes and military personnel subjected
to high physical loads and varying environmental conditions.

The use of neural networks to predict pathological con-
ditions is currently an area of active research. However, Al
has yet to find widespread application in the study of human
adaptation to altered environmental conditions. Training such
algorithms requires the accumulation of physiological data
collected under hyperbaric conditions and during states of
hypo- and hyperoxia. These studies could help identify phys-
iological parameters that respond positively to training in
such environments. Thus, the development of Al may lead to
new discoveries in sports medicine.

Despite its promising potential, several limitations cur-
rently hinder the widespread implementation of Al in stud-
ies of environmental effects on the human body. Machine
learning algorithms used in existing research are effective at
identifying correlations but cannot reliably explain why cer-
tain environmental factors elicit specific responses. At pres-
ent, most machine learning models can be used to generate
hypotheses but not to verify them. Developing interpretable
models remains a major challenge for future research in hu-
man physiology [49].

Most studies to date have involved small sample sizes,
as noted by the researchers themselves. The development
of accurate predictive models necessitates a large number
of labor-intensive experiments simulating altered environ-
mental conditions. It is essential to maintain a balanced dis-
tribution of environmental conditions and subject groups to
ensure that the training data are sufficiently representative.
In addition, biosensors used to detect physiological changes
are often susceptible to noise and artifacts, which significant-
ly complicates research in this domain.

PROSPECTS FOR APPLICATION OF
ARTIFICIAL INTELLIGENCE TECHNOLOGIES
IN RESEARCH ON HUMAN HYPOXIC
POTENTIAL UNDER EXTREME CONDITIONS

Hypoxic potential refers to the human body's ability to
adapt to conditions of reduced oxygen availability—such as
high-altitude environments, intense physical exertion, or oth-
er extreme situations. Studying hypoxic adaptation is import-
ant for medicine, sports, space biology, and other scientific
domains. Within the field of adaptive medicine, interest in
machine learning models is only beginning to grow, and the
number of published studies is still minimal.

Machine learning models can be used to design personal-
ized training programs that account for individual responses
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to hypoxic stress. This is particularly important in elite sports,
where even small improvements can be decisive. In one
study [50], a machine learning model was developed based
on selected physiological parameters (red blood cell count
and hemoglobin concentration) collected from 64 profes-
sional speed skaters who underwent a 10-week training
program (3 weeks of baseline training at sea level, 4 weeks
of hypoxic training, and 3 weeks of recovery). The machine
learning model demonstrated higher accuracy in assessing
physiological variables compared with a polynomial model
and enabled the development of an effective system for pre-
dicting physiological changes under hypoxic training based on
baseline sea-level measurements.

Beyond sports medicine, Al is also applied in aviation. In
another study [51], researchers explored the use of wearable
sensors and machine learning algorithms to enable early de-
tection of hypoxia and prevent in-flight emergencies. As part
of the experiment, 85 participants underwent a two-phase
study in which they used aviation masks that regulated ox-
ygen supply. The participants performed cognitive tests and
flight simulations whereas the oxygen level was gradually
reduced to simulate high-altitude ascent. The data collected
via dry EEG electrodes were processed using machine learn-
ing algorithms, and the extracted features of brain activity
were transformed. The machine learning models showed
high sensitivity (0.83 to 1.00) and specificity (0.91 to 1.00) in
detecting hypoxia. This research highlights major progress in
developing real-time systems for in-flight hypoxia detection.

Mazing et al. [52] demonstrated machine learning mo-
dels' ability to detect tissue hypoxia during reduced inspired
oxygen levels and to assess individual hypoxia tolerance.
Using an optical sensor, the researchers measured tissue
hypoxemia in participants. The collected data were used to
train a self-organizing map (SOM), a type of neural network
used to uncover hidden patterns and cluster objects into
groups. As a result, the model divided the participants into
three groups with differing levels of hypoxia tolerance and
functional physiological states. This study demonstrates the
feasibility of creating a simple, reproducible test to assess
individual hypoxia tolerance based on neural networks.

The use of Al models in the study of hypoxic adaptation
mechanisms represents a promising area of research. Ma-
chine learning models can serve as tools for processing and
analyzing large datasets, identifying latent patterns, and pre-
dicting individual responses to hypoxic exposure. For exam-
ple, there are still no precise and clearly defined parameters
that allow for an objective assessment of a person’s hypoxia
tolerance during a hypoxic test. Many additional parameters
may indirectly help to complete the picture of an individu-
al's hypoxia tolerance [53]. Numerous contentious questions
remain concerning the selection of an intermittent hypoxic
stimulation regimen, such as the oxidative and inflamma-
tory processes induced by intermittent hypoxic training [54,
55], and the involvement of reactive oxygen species during
recovery [56, 571.
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The undeniable advantages of Al-based approaches for
detecting hypoxia lie primarily in their ability to rapidly pro-
cess multimodal data—such as biosensor readings from
wearable devices (lactate, Sp0,, heart rate, heart rate vari-
ability) and environmental parameters (temperature, humid-
ity, atmospheric pressure), among others—and to identify
complex patterns within these data. Traditional approaches
would require predefined hypotheses and lengthy statistical
processing, along with preprocessing to enable data com-
parability. This paper described earlier how neural networks
can process unstructured data—such as EEG, ECG, micro-
circulation images, and examples of nasal airflow and Sp0,
analysis for apnea detection—which would not be feasible
using standard polysomnography due to its high cost and
interpretive complexity.

Al applications in this field are likely to offer new per-
spectives on data related to hypoxia tolerance, the imple-
mentation of adaptive mechanisms at molecular and system-
ic levels, and the interrelationships among these processes.

CONCLUSION

The modern environment is characterized by numerous
simultaneously acting external factors, the impact of which
on the human body can now be monitored thanks to advanc-
es in Al, such as machine learning algorithms, deep learn-
ing, and generative models. These technologies open new
frontiers in the biomedical field, enabling the identification
of hidden relationships between elements and processes. Of
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particular importance is the study of exogenous hypoxia—
one of the key environmental factors explored in ecology,
physiology, and clinical medicine. Questions concerning in-
dividual tolerance to hypoxic conditions remain highly rel-
evant and are actively discussed in the scientific data. Con-
temporary research increasingly employs machine learning
and deep learning methods to analyze multidimensional
physiological data. The application of these methods in the
planning of scientific experiments, data analysis, and the de-
velopment of predictive models significantly improves our
understanding of human adaptation mechanisms to hypoxia
and facilitates further investigation into the effects of other
environmental factors. Ongoing developments demonstrate
considerable potential for future progress in this area by
improving the efficiency of research procedures through
optimized statistical analysis, data processing, and experi-
mental design. A particularly important direction of research
involves the study of human adaptive capacity, wherein the
development of classification models to distinguish groups
with differing levels of stress resilience holds relevance for
various fields, including medicine, biology, and psychology.
The creation of predictive models for assessing hypoxia tol-
erance holds potential for enhancing machine learning meth-
odologies and for addressing applied challenges in clinical,
aerospace, and space medicine. However, several limitations
hinder the widespread use of Al in adaptation studies, includ-
ing difficulties in acquiring sufficient data, the limited quality
of biosensors, and the lack of interpretable machine learning
models for studying environmental factors.
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AOMOJHUTE/IbHAA UHDOOPMALIUA

Bknap, aBTopoB. /1.0. banyHoB — cbop v aHanm3 NMUTepaTypHbIX MCTOUHU-
KOB, NOATOTOBKA W HanWcaHue TeKcTa cTatby; A.C. MuxanuiumHa — o63op
nuTepatypel, cbop 1 aHanm3 MTepaTypHbIX MCTOYHWKOB, MOAMOTOBKA W Ha-
nucaHvie TekcTa ctaTby; A.A. BeHepuH — 0630p nutepatypel, cbop 1 aHanms
JUTEPaTYPHbIX MCTOYHUKOB, HanMCaHWe TeKCTa W peaaKT1POBaHUe CTaTby;
0.C. TnasayeB — 0630p nMTEPATYPHI, COOP M aHaNM3 NIUTEPATYPHBIX UC-
TOYHVKOB, HanMcaHWe TeKCTa 1 peAaKT1pOBaHMe cTaTbyt. Bee aBTopel Noa-
TBEPXK/LAl0T COOTBETCTBME CBOEr0 aBTOPCTBA MEX[YHapPOAHbIM KpUTEPUAM
ICMJE (Bce aBTOpbI BHEC/IN CYLLECTBEHHBIM BKIAZ, B pa3paboTKy KOHLLENLMK,
npoBe/eHne UCCeA0BaHNs W MOArOTOBKY CTaTbk, MPOYIW M 0[06pHUAM K-
HaslbHyI0 BEPCUI0 Nepen, nybnnKaumen).

JITHyeckan akcnepTusa. HenpyMeHnMo.

WUctounnkn dunaHcuposanusa. OTcyTCTBYHOT.

PackpbiThe MHTepecoB. ABTOPbLI 3asBAIOT 06 OTCYTCTBUM OTHOLLIEHWI, fie-
ATENLHOCTV W MHTEPecoB 3a MOC/e[HNe TPU rOfia, CBA3aHHBIX C TPETbI MM
MUaMm1 (KOMMEPYECKUMM W HEKOMMEPYECKVMM), MHTEPECH! KOTOPbIX MOTYT
BbITb 3aTPOHYTHI COLlEPXKAHMEM CTaTbU.

OpuruHanbHocTb. [lpy co3aaHum HacToALel paboTbl aBTopbl He WC-
nosb30Banu paHee OMybnMKOBaHHbIE CBEAEHUA (TEKCT, WAMKOCTpaLmu,
JaHHble).

HocTyn K AaHHbIM. PefaKLMOHHas NOMMTMKA B OTHOLLEHWMW COBMECTHOMO
MCMOMb30BaHUA aHHbIX K HAcToALLEel paboTe He MpUMeHWMMa, HoBble AaH-
Hble He CObupanu 1 He Co3AaBau.

leHepaTUBHbIA MCKYCCTBEHHbIV MHTENNEKT. [Ipy CO30aHMM HACTOALLE
CTaTbW TEXHONMOTMM TeHEPaTMBHOTO WCKYCCTBEHHOMO MHTENNEKTa He UC-
nonb30Banu.

PaccMoTpenne M peuensupoBanme. HacToslaa cTaTbs paccMaTpuBsa-
nacb B Nnops/iKe ycKopeHHol npouenypsl (fast track). B peueHavpoBaHum
y4acTBOBaMM ABa BHELUHWX PELEH3eHTa, YNeH PefaKUMOHHOW Konnernm
W HayYHbIV pejakTop N3aaHus.
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