УДК 616.839:796.9 DOI: 10.33396/1728-0869-2021-11-28-32

СОСТОЯНИЕ НЕЙРОВЕГЕТАТИВНОЙ СИСТЕМЫ МУЖЧИН В УСЛОВИЯХ ЗИМНЕГО МАРАФОНА

© 2021 г. ¹В. М. Еськов, ²В. Ф. Пятин, ¹В. А. Галкин, ³Л. С. Чемпалова

¹ФГУ «ФНЦ Научно-исследовательский институт системных исследований Российской академии наук», Обособленное подразделение «ФНЦ НИИСИ РАН» в г. Сургуте; ²ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, г. Самара; ³ФГБОУ ВО «Самарский государственный технический университет», г. Самара

Введение: Выполнение длительных физических нагрузок в зимнее время связано с существенными перестройками нейровегетативной системы.

Цель: Изучить динамику изменения параметров симпатической и парасимпатической нейровегетативных систем группы мужчин в условиях зимнего бегового марафона.

Методы: С помощью автоматизированной системы на базе ЭВМ регистрировались параметры симпатической и парасимпатической нейровегетативных нервных систем группы мужчин (15 человек) до и после зимнего марафона (50 км). Производился расчет матриц парных сравнений выборок параметров симпатической и парасимпатической систем до и после марафона. Находились числа k пар выборок, которые имели общую генеральную совокупность.

Результаты: Построены четыре матрицы парных сравнений выборок, которые показали, что для симпатической вегетативной нервной системы доля стохастики поднялась с $k_1 = 11$ до $k_2 = 13$, для парасимпатической системы доля стохастики повысилась с $k_1 = 10$ до $k_2 = 13$.

Выводы: Наблюдается равнонаправленная динамика изменения доли стохастики до и после марафона. Для симпатической и парасимпатической систем наблюдается падение доли хаоса, но в любом случае констатируем статистическую неустойчивость выборок. Ключевые слова: симпатическая и парасимпатическая нейровегетативные системы, эффект Еськова – Зинченко, зимний марафон

NEUROVEGETATIVE SYSTEM CONDITIONS DURING WINTER MARATHON IN MEN

¹V. M. Eskov, ²V. F. Pyatin, ¹V. A. Galkin, ³L. S. Chempalova

¹Federal Science Center Scientific-research Institute for System Studies of the Russian Academy of Sciences, Surgut; ²Samara State Medical University, Samara; ³Samara State Technical University, Samara, Russia

Introduction: Long-duration physical activity in winter is associated with significant demands for neurovegetative system.

Aim: To explore the changes in the parameters of sympathetic and parasympathetic neurovegetative systems in men during a winter

Methods: Parameters of the sympathetic and parasympathetic nervous systems of the group were estimated in 15 men after the winter marathon (50 km) using an automated computer-based system. Pairwise comparisons matrices of the parameter of the sympathetic and parasympathetic systems before and after the marathon were performed. There were found the k numbers of pair samples that had a common general population.

Results: Four matrices of pairwise comparisons were constructed and shown the increasing of the proportion of stochastic from $k_1 = 11$ to $k_2 = 13$ for the sympathetic autonomic nervous system.

Conclusions: An equidirectional dynamic of stochastic's proportion changes before and after the marathon is observed. For the sympathetic and parasympathetic systems, the drop of chaos is observed, but we still can make a conclusion on the statistical instability of the samples.

Key words: sympathetic and parasympathetic neurovegetative systems, the effect of Eskov-Zinchenko, winter marathon

Библиографическая ссылка:

Еськов В. М., Пятин В. Ф. Галкин В. А., Чемпалова Л. С. Состояние нейровегетативной системы мужчин в условиях зимнего марафона // Экология человека. 2021. № 11. С. 28–32.

For citing

Eskov V. M., Pyatin V. F., Galkin V. A., Chempalova L. S. Neurovegetative System Conditions during Winter Marathon in Men. *Ekologiya cheloveka (Human Ecology)*. 2021, 10, pp. 28-32.

Введение

Общеизвестно, что при длительных физических нагрузках у человека в большинстве случаев нарастает активность симпатической нейровегетативный системы (СВНС) и падает активность парасимпатической нейровегетативный системы (ПВНС) [3—6]. При этом было установлено, что в условиях нормального старения у жителей севера Российской Федерации (например, у народов ханты) с возрастом закономерно существенно нарастает активность СВНС и падает

активность ПВНС. В этой связи активная физическая нагрузка для лиц старшей возрастной группы может обеспечить инверсию СВНС над ПВНС, то есть параметров нейровегетативного статуса человека, еще на подступах к старости [1, 7, 9].

При этом не следует исключать из рассмотрения и реальность статистической неустойчивости выборок параметров сердечно-сосудистой системы (ССС), которая сейчас зарегистрирована как эффект Еськова — Зинченко (ЭЕЗ) сначала в биомеханике [7–9, 15], а

затем и в физиологии и экологии человека [1, 2, 7, 8, 15, 16]. Таким образом, исследование параметров человека при занятиях физической культурой и спортом требует не только использования традиционных [3-6, 10-14] статистических подходов, что сейчас превалирует в физиологии и медицине, но и внедрения новых методов теории хаоса - самоорганизации (ТХС)[2, 5, 8, 9, 15, 16]. Именно методы ТХС смогут обеспечить учет реальных изменений в организме и избежать статистических неточностей. В данной работе используется метод построения матриц парных сравнений выборок для оценки параметров СВНС и ПВНС до и после зимнего марафона (50 км). Отметим, что хаос характерен и в работе нейросетей мозга [7, 9, 16] и других систем организма человека [2, 7-9, 15, 16].

Целью исследования является установление новых закономерностей поведения параметров СВНС и ПВНС в организме мужчин в условиях зимнего марафона.

Методы

Главной задачей настоящих исследований явилось установление закономерностей поведения параметров симпатической и парасимпатической вегетативных нервных систем мужчин в условиях зимнего бегового (на лыжах) марафона с позиций статистической неустойчивости выборок [1, 2, 7-9]. Группа из пятнадцати мужчин (средний возраст $\langle T \rangle = (60,0 \pm 3,6)$ года) обследовалась с помощью прибора Элокс-01 согласно Хельсинкской декларации. Регистрация параметров СВНС — x_1 и ПВНС — x_2 производилась согласно рекомендациям Европейской ассоциации кардиологов [3-6, 11-14] (не менее 5 минут, что дало в каждой выборке х, и х, для каждого испытуемого не менее 300 значений этих параметров). Выборки обрабатывали статистически на предмет проверки распределения. Установлена только одна выборка с нормальным распределением. В этой связи все дальнейшие расчеты проводились для непараметрических распределений.

В итоге было получено 15 выборок СВНС и 15 выборок ПВНС до марафона и такое же количество выборок x_1, x_2 для каждого испытуемого после марафона (50 км). Температура окружающего воздуха t=-10 °C. Для полученных выборок x_1 , x_2 строились матрицы попарного сравнения, в которые заносились (как элемент $P_{i,i}$ матрицы, где i — номер строки, j — номер столоща) значения непараметрического критерия Ньюмана — Кейлса [3-6, 8, 9]. Если $P_{ij} \ge$ 0,05, то считалось, что такая пара выборок x_1, x_2 может иметь одну общую генеральную совокупность. При $P_{i,i} < 0.05$ мы считаем, что эти две сравниваемые выборки статистически не могут совпадать. Во всех $P_{i,j} < 0.00$ мы имеем $P_{i,j} < 0.000$ (три знака после запятой не писали из-за громоздкости таблиц). В итоге во всех этих четырёх матрицах мы находили числа k, которые показывали число пар выборок x_1 , x_{2} , демонстрирующих статистические совпадения для симпатической (СВНС) — k^{S} и парасимпатической (ПВНС) — k^{p} систем.

Отметим, что низкое k (k < 20 %) доказывает ЭЕЗ, то есть отсутствие статистической устойчивости выборок с позиций стохастики [1, 2, 7–9, 15, 16]. Это означает, что группа неоднородная, с ней невозможно дальше работать в рамках стохастики из-за уникальности каждой выборки x_1 или x_2 . Это требует перехода к новым методам ТХС [1, 2, 7–9], что мы и сделали путем расчета матриц парных сравнений выборок [15, 16].

Результаты

Сразу отметим, что статистическая неустойчивость выборок ранее нами была доказана в биомеханике [7, 8, 15] и при изучении параметров кардиоинтервалов (КИ) [1, 2, 8, 9]. Сейчас мы уделяем особое внимание параметрам вегетативный нервной системы (ВНС) человека в условиях бегового (на лыжах) зимнего марафона. Отметим, что сейчас завершаются наши исследования и по летнему марафону, где данные имеют другую направленность. Доказательство ЭЕЗ основано на расчётах матриц парных сравнений выборок \mathbf{x}_1 и \mathbf{x}_2 перед марафоном и после забега на 50 км. При этом исследовалась именно старшая возрастная группа, средний возраст около 60 лет.

Расчёт матриц попарного сравнения выборок показал, что k во всех случаях ($k_1^S=11$ и $k_1^P=10$ до и $k_2^S=13$ и $k_2^P=12$ после марафона) не могут превышать 15 % от всех сравниваемых выборок из 105 пар в каждой такой матрице. Мы представляем две матрицы парных сравнений выборок для СВНС до забега k_1^S и после забега k_2^S в табл. 1 и табл. 2. Отметим, что число k_1^S в табл. 1 небольшое ($k_1^S=11$). Это доказывает отсутствие статистической устойчивости выборок параметров ВНС у группы мужчин перед марафоном.

Доля хаоса (т. е. несовпадений выборок) в табл. 1 почти 90 %. Это и есть доля стохастического хаоса в параметрах СВНС. Хаос преобладает над стохастикой, и параметры СВНС крайне статистически неустойчивы. Подобные результаты мы получили и в других группах (всего было обследовано более 500 человек). Табл. 1 демонстрирует неустойчивость, которая характерна для любой группы испытуемых при анализе параметров СВНС.

Отметим, что после нагрузки наблюдается небольшое увеличение доли стохастики. Для параметров x_1 в табл. 2 мы имеем $k_2{}^S = 13$, то есть $k_2{}^S > k_1{}^S$. Это характеризует влияние зимнего бегового марафона на параметры ВНС. Однако в любом случае мы имеем крайне низкие значения доли стохастики в параметрах ВНС. Это доказывает реальность ЭЕЗ для ВНС человека, находящегося в различных физиологических состояниях (до марафона и после) [1, 2, 8, 9, 15, 16].

Таким образом, для СВНС характерно именно нарастание доли стохастики после длительной физической нагрузки. Это же характерно и для ПВНС. Были также построены и две таблицы сравнения x_2

 $\begin{tabular}{ll} \it Tаблица 18 \\ \it Уровни значимости (P) для попарных сравнений 15 выборок параметров симпатической вегетативной нервной системы (SIM) \\ \it у группы мужчин до марафона 50 км (n = 15) с помощью непараметрического критерия Ньюмана — Кейлса, \\ \it число совпадений <math>k, = 11$

	1	1	1		1	1		1		1	1			1	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	R:1857,6	R:3487,2	R:2932,9	R:1241,2	R:1203,9	R:2947,8	R:493,41	R:2371,3	R:4005,3	R:2415,4	R:1784,3	R:929,93	R:1850,3	R:2913,9	R:3323,1
1		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00
2	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
3	0,00	0,00		0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,02
4	0,00	0,00	0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,35	0,00	0,00	0,00
5	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
6	0,00	0,00	1,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,04
7	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
8	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	1,00	0,00	0,00	0,00	0,00	0,00
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00		0,00	0,00	0,00	0,00	0,00
11	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	1,00	0,00	0,00
12	0,00	0,00	0,00	0,35	1,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00
13	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00		0,00	0,00
14	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,01
15	0,00	1,00	0,02	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	

Tаблица 2 Уровни значимости (P) для попарных сравнений 15 выборок параметров симпатической вегетативной нервной системы (SIM) у группы мужчин после марафона 50 км (n=15) с помощью непараметрического критерия Ньюмана — Кейлса,

число совпадении $\kappa_2^2 = 15$															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	R:788,53	R:3599,0	R:3983,9	R:841,59	R:1299,5	R:2928,2	R:380,10	R:3912,0	R:1978,9	R:2175,8	R:2746,8	R:2258,4	R:3279,3	R:2821,3	R:764,12
1		0,00	0,00	1,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
2	0,00		0,03	0,00	0,00	0,00	0,00	0,33	0,00	0,00	0,00	0,00	0,27	0,00	0,00
3	0,00	0,03		0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
4	1,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
5	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	1,00	0,00	0,10	1,00	0,00
7	0,01	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03
8	0,00	0,33	1,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,00	0,00	0,88	0,00	0,00	0,00
10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	1,00	0,00	0,00	0,00
11	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00		0,00	0,00	1,00	0,00
12	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,88	1,00	0,00		0,00	0,00	0,00
13	0,00	0,27	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00
14	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00		0,00
15	1,00	0,00	0,00	1,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

для исследуемой группы. Установлено, что до нагрузки число пар выборок \mathbf{x}_2 в такой таблице (аналог матрице, см. табл. 2) меньше, чем для \mathbf{x}_1 . Здесь $k_1{}^p=10$, а для СВНС было $k_1{}^S=11$. После марафона $k_2{}^p$ тоже несколько увеличилось, но не достигло значения $k_2{}^S$ ($k_2{}^p=12$ против $k_2{}^S=13$).

Оба показателя состояния ВНС у спортсменов перед марафоном и после демонстрируют крайне низкие значения k. Это доказывает реальность ЭЕЗ [1, 2, 8, 9, 15, 16] для всех параметров ВНС, что расширяет область применения этого эффекта на различные параметры состояния ССС у спортсменов в условиях длительных физических нагрузок. При этом матрицы парных сравнений однонаправленно изменялись (подобно табл. 1 и табл. 2).

Очевидно, что применение метода расчёта матрица парных сравнений выборок [1, 2, 8, 9, 16] обеспечит

выход из возникающего кризиса при применении традиционных статистических методов [1, 2 7–9]. Матрицы показывают различия в параметрах СВНС и ПВНС до и после марафона, в то время как статистика по всей группе демонстрирует уже различия выборок (см. табл. 1 и табл. 2) самих испытуемых в их неизменных условиях (т. е. до марафона или после). Мы делали многократные повторные измерения \mathbf{x}_1 и \mathbf{x}_2 для этой же группы в спокойном состоянии, и выборки при повторении показали крайне малое значение k (а пары совпадений каждый раз были разные).

Все это означает, что статистическая неустойчивость параметров \mathbf{x}_1 и \mathbf{x}_2 имеет всеобщий характер. Экология человека сейчас нуждается в разработке новых методов оценки однородности групп и для идентификации реальных различий в физиологических состояниях организма человека (у нас до нагрузки

и после). Это можно выполнить сейчас в рамках новой ТХС. Выборки x_1 и x_2 являются уникальными и для каждого испытуемого [1, 2, 7-9], статистически повторить их произвольно невозможно. В этом отношении определенные перспективы открывают методы расчёта псевдоаттракторов [7-9], что мы и представим в следующем сообщении.

Обсуждение результатов

Традиционно уже более 100 лет в экологии и в биомеханике используются различные статистические методы в оценке параметров функций организма человека. При этом считается, что неизменный физиологический статус должен подтверждаться и неизменностью выборок параметров этих функций организма. Однако последние 20 лет накапливается все больше материала о возможности регистрации статистически неустойчивых выборок у испытуемого, находящегося в неизменном физиологическом состоянии. Это нами обозначается как эффект Еськова — Зинченко (ЭЕЗ).

В настоящее время в биомеханике и экологии человека для параметров КИ твёрдо доказан ЭЕЗ [1, 2, 7-9, 15, 16]. Этот эффект основан на доказательстве отсутствия статистической устойчивости биомеханических и других физиологических параметров как для одного испытуемого, так и для группы в режиме многих повторных регистраций [1, 2, 7-9, 15, 16]. Сейчас мы доказываем реальность ЭЕЗ и в оценке параметров ВНС у группы спортсменов. Для этих целей строились матрицы парных сравнений выборок параметров СВНС $-x_1$ и ПВНС $-x_2$, которые показывали низкие значения критерия Ньюмана -Кейлса Р (если Р ≥ 0,05, то такая пара считалось статистически совпадающей), то есть выборки не принадлежат к одной генеральной совокупности. При Р < 0,05 выборки различаются и сама группа теряет однородность.

Следует отметить, что эффект статистической неустойчивости выборок любых параметров $x_i(t)$ для ССС был нами первоначально доказан в исследованиях с одним человеком. При многократных повторных регистрациях выборок КИ у одного и того же испытуемого при парном сравнении двух соседних выборок КИ получаем частоту их совпадения $P_{i,j+1} \le 0,1$ [1, 2, 7—9]. Это очень малая величина. Если регистрировать подряд выборки КИ (не менее 5 минут каждая выборка), то мы получаем частоту парных совпадений не более 15 %. В итоге этот ЭЕЗ был первоначально доказан для КИ у одного и того же испытуемого, а затем и для групп разных испытуемых. Подчеркнем, что несовпадение выборок КИ у группы доказывает потерю однородности.

Работать с неоднородными группами в статистике невозможно, так как непонятно, из-за чего организм каждого испытуемого демонстрирует различия (были это физиологически разные люди или нет). Тогда необходимо применять другие методы оценки параметров ВНС спортсменов до и после марафона.

В рамках новой теории ТХС [1, 2, 7-9, 15, 16] мы

предлагаем рассчитывать не только матрицы парных сравнений выборок параметров работы сердца, но и находить площади псевдоаттракторов (ПА) [2, 7–9, 15, 16]. В этом случае эти площади ПА реально показывают состояние ССС человека (что в статистике выполнить затруднительно [1, 2, 7–9]).

Выводы

Установлено, что физическая нагрузка уменьшает долю хаоса в работе ССС (на примере ВНС). В итоге мы приходим к необходимости разработки новых методов и моделей в экологии человека для оценки физиологического состояния спортсмена. В матрицах парных сравнений выборок нарастает доля стохастики (до $k_2^{\ p}=12$ для ПВНС и до $k_2^{\ s}=13$ для СВНС). Однако в любом случае эти величины не превышают 15 %, что крайне мало для статистики (где обычно требуется более 95 % совпадений).

Один из вариантов такой оценки — построение матриц парных сравнений выборок x_1 и x_2 . Эти матрицы не только доказывают ЭЕЗ для ВНС, то есть статистическую неустойчивость выборок, но и позволяют оценить состояние и различия ВНС до и после нагрузки (как для СВНС, так и для ПВНС).

Матрицы сравнения x_1 и x_2 доказали ЭЕЗ для ВНС и демонстрируют реальные изменения в регуляции ССС за счет нарастания доли стохастики после нагрузки — повышается регулярность в работе ВНС. Всё это характеризует состояние ССС спортсменов в зимнее время при физических нагрузках. Выявлены особенности изменений параметров ВНС при нагрузке, которые демонстрируют высокую долю статистического хаоса (ЭЕЗ) в работе ССС. Очевидно, дальнейшее развитие всей экологии человека может быть связано с применением новых методов расчета матриц (вида табл. 1 и 2) и расчетом параметров псевдоаттракторов [2, 7—9, 15, 16].

Следует подчеркнуть, что за последние 20 лет твердо доказан ЭЕЗ, в котором отсутствует статистическая устойчивость выборок любых параметров функций организма. В настоящей работе мы это доказываем на примере параметров ВНС. Ранее мы это показали на примерах с кардиоинтервалами, электромиограммами, электроэнцефалограммами [16]. Все эти параметры организма демонстрируют статистическую неустойчивость. Очевидно, что это общее свойство биосистем, которое сейчас надо уже учитывать в экологии человека. Работать дальше с уникальными (не повторимыми статистически) выборками уже невозможно. Экология, как и другие науки (биология, психология, медицина) о живых системах, требует разработки новых методов и новых теорий. Мы сейчас создаем такую новую теорию в виде ТХС [7-9]. В этой связи новой ТХС уже учитывается статистическая неустойчивость выборок и предлагаются методы расчета матриц парных сравнений выборок и расчет параметров псевдоаттракторов [1, 2, 7-9, 15, 16].

Благодарности

Работа выполнена при поддержке гранта РФФИ № 18-47-860001 р_а «Разработка вычислительной системы для идентификации параметров тремора при стрессвоздействиях в психофизиологии».

Авторство

Еськов В. М. выполнил математическое обоснование расчета матриц парных сравнений выборок, а также обосновал методы расчета квазиаттракторов для оценки гомеостаза при физической нагрузке; Пятин В. Ф. выполнил регистрацию параметров вегетативной нервной системы испытуемых до и после марафона; Галкин В. А. осуществил расчет матриц парных сравнений выборок параметров КИ $k_1^{\ S}$ до и после марафона $k_2^{\ S}$; Чемпалова Л. С. провела статистический анализ значения интегральных и временных показателей регуляции сердечно-сосудистой системы испытуемых.

Авторы подтверждают отсутствие конфликта интересов.

Еськов Валерий Матвеевич — ORCID 0000-0002-1497-897X; SPIN 6349-8387

Пятин Василий Федорович — ORCID 0000-0002-9310-9413; SPIN 3058-9038

Галкин Валерий Алексеевич — ORCID 0000-0002-9721-4026; SPIN 6947-4944

Чемпалова Любовь Сергеевна — ORCID 0000-0003-2621-638X; SPIN 9064-2900

Список литературы / References

- 1. Еськов В. В., Филатова О. Е., Башкатова Ю. В., Филатова Д. Ю., Иляшенко Л. К. Особенности возрастных изменений кардиоинтервалов у жителей Севера России // Экология человека. 2019. № 2. С. 21–26.
- Eskov V. V., Filatova O. E., Bashkanova Y. V., Filatova D. Y., Ilyashenko L. K. Age-Related Changes in Heart Rate Variability among Residents of the Russian North. *Ekologiya cheloveka (Human Ecology)*. 2019, 2, pp. 21-26. [In Russian]
- 2. Филатова Д. Ю., Башкатова Ю. В., Мельникова Е. Г., Шакирова Л. С. Проблема однородности параметров кардиоинтервалов у детей школьного возраста в условиях широтных перемещений // Экология человека. 2020. № 1. С. 6—10.
- Filatova D. Yu., Bashkatova Yu. V., Melnikova E. G., Shakirova L. S. Homogeneity of the Parameters of the Cardiointervals in School Children after North-South Travel. *Ekologiya cheloveka (Human Ecology)*. 2020, 1, pp. 6-10. [In Russian]
- 3. Brown R., Macefield V. G. Skin sympathetic nerve activity in humans during exposure to emotionally-charged images: sex differences. *Frontiers in Physiology*. 2014, 5, p. 111.
- 4. Chan N., Choy C. Screening for atrial fibrillation in 13 122 Hong Kong citizens with smartphone electrocardiogram. *Heart*. 2017, 103, pp. 24-31.
- 5. Critchley H. D. Neural mechanisms of autonomic, affective, and cognitive integration. *J. Comp. Neurol.* 2005, 493 (1), p. 154.

- 6. Dampney R. A. Central neural control of the cardiovascular system: current perspectives. *Advances in Physiology Education*. 2016, 40 (3), pp. 283-296.
- 7. Eskov V. V., Gavrilenko T. V., Eskov V. M., Vokhmina Y. V. Phenomenon of statistical instability of the third type systems complexity. *Technical physics*. 2017, 62 (11), pp. 1611-1616.
- 8. Eskov V. V., Filatova D. Y., Ilyashenko L. K., Vochmina Y. V. Classification of uncertainties in modeling of complex biological systems. *Moscow University Physics Bulletin.* 2019, 74 (1), pp. 57-63.
- 9. Eskov V. V. Modeling of biosystems from the stand point of "complexity" by W. Weaver and "fuzziness" by L. A. Zadeh. *Journal of Physics Conference Series*. 2021, 1889 (5), p. 052020 DOI: 10.1088/1742-6596/1889/5/052020
- 10. Lovallo W. R. Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. *Psychosomatic Medicine*. 2003, 65 (1), pp. 36-45.
- 11. McCraty R., Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk. *Global advances in health and medicine*. 2015, 4 (1), pp. 46-61. DOI: 10.7453/gahmj.2014.073
- 12. Nobrega A., O'Leary D., Silva B.M. et al. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. *BioMed. Res. Int.* 2014, 2014. Article ID 478965. 20 p.
- 13. Reyes del Paso G. A., Langewitz W., Mulder L. J., van Roon A., Duschek S. The Utility of Low Frequency Heart Rate Variability as an Index of Sympathetic Cardiac Tone: a Review with Emphasis on a Reanalysis of Previous Studies. *Psychophysiology*. 2013, 50 (5), pp. 477-487. DOI: 10.1111/psyp.12027
- 14. Shaffer F., Ginsberg J. An overview of heart rate variability metrics and norms. *Frontiers in public health*. 2017, 5, p. 258.
- 15. Zilov V. G., Khadartsev A. A., Ilyashenko L. K., Eskov V. V., Minenko I. A. Experimental analysis of the chaotic dynamics of muscle biopotentials under various static loads. *Bulletin of experimental biology and medicine*. 2018, 165 (4), pp. 415-418.
- 16. Zilov V. G., Khadartsev A. A., Eskov V. V., Ilyashenko L. K., Kitanina K. Yu. Examination of statistical instability of electroencephalograms. *Bulletin of experimental biology and medicine*. 2019, 168 (7), pp. 5-9.

Контактная информация:

Еськов Валерий Матвеевич — заслуженный деятель науки Российской Федерации, доктор физико-математических наук, доктор биологических наук, профессор, главный научный сотрудник, зав. отделом биофизики и нейрокибернетики ФГУ «ФНЦ Научно-исследовательский институт системных исследований Российской академии наук», Обособленное подразделение «ФНЦ НИИСИ РАН» в г. Сургуте

Адрес: 628400, Тюменская обл., г. Сургут, ул. Базовая, л 34

E-mail: filatovmik@yandex.ru