Физика волновых процессов и радиотехнические системы

УДК 534.2:538.951

Электрозвуковые волны щелевого типа в слоистой структуре относительно перемещающихся пьезоэлектриков

Е.А. Вилков¹, С.Н. Марышев², Н.С. Шевяхов¹

¹ Ульяновский филиал Института радиотехники и электроники им. В.А. Котельникова РАН 432011, Россия, г. Ульяновск

ул. Гончарова, 48

² Московский физико-технический институт (государственный университет)

141700, Россия, Московская обл., г. Долгопрудный

Институтский переулок, 9

Обсуждаются особенности дисперсионных спектров мод щелевых электрозвуковых волн в слоистой структуре пьезоэлектриков с вакуумным зазором, вызванные их относительным равномерным перемещением. Показана возможность практического использования антисимметричной моды щелевых электрозвуковых волн для разработки сенсорных устройств.

Ключевые слова: электрозвуковые волны, пьезоэффект, механическая относительность, щелевые структуры.

Введение

Хорошо известно [1-4], что границы вакуумного зазора пьезоэлектриков класса 6 mm (4 mm, ∞ mm) без металлизации способны удерживать сдвиговые поверхностные волны, получившие [2] название щелевых электрозвуковых волн. Для них причиной граничной локализации и взаимной гибридизации электроупругих полей по разные стороны зазора является сцепление электрическими полями, возникающими благодаря пьезоэффекту обоих кристаллов в зазоре. При конструировании приборов для исследования электропроводящих жидкостей посредством щелевых электрозвуковых волн возникает необходимость в металлизации границ пьезоэлектриков. В этом случае сцепление пьезоэлектриков электрическими полями через зазор с успехом заменяет связь, возникающая между кристаллами благодаря присущей реальным жидкостям вязкости [5].

В настоящее время исследования дисперсионных свойств щелевых электрозвуковых волн акцентированы на выявлении особенностей, связанных с учетом диэлектрических свойств материала слоя, размещенного без акустического контакта в зазоре. Наряду с этим учитывались различия пьезоэлектриков в отношении материальных параметров и кристаллографической симметрии, рассматривалось влияние поперечного размера одного из пьезоэлектриков слоистой структуры, а также оценивался вклад запаздывания электрических полей. Соответствующие результаты приведены в работах [6-8].

Кроме перечисленных аспектов в [9] в связи с запросами бурно развивающейся мехатроники [10] обсуждалось влияние относительного продольного перемещения (ОПП) пьезоэлектриков класса 4 mm (6 mm, ∞ mm), разделенных предельно тонким зазором, на поведение щелевых электрозвуковых волн. Выяснилось, что они обладают сравнительно высокой чувствительностью к скорости и знаку скорости таких перемещений. В акустоэлектронных радиокомпонентах на поверхностных акустических волнах (ПАВ) надежно регистрируемые изменения скорости их распространения при различных воздействиях на звукопровод обычно малы (составляют десятые и сотые доли процента [11]). Представляется поэтому, что преобразование щелевых электрозвуковых волн вследствие ОПП можно положить в основу действия различного рода сенсорных датчиков кинематических характеристик, а сам механизм взаимодействия кристаллов, обеспечивающий формирование щелевых электрозвуковых волн электрическими полями через зазор, использовать, попутно для контроля и саморегулирования взаимных перемещений пьезоэлектриков.

Для внесения большей ясности в оценку указанных перспектив следует обобщить результаты [9] на случай зазора конечной толщины. Целесообразно также расширить группу пьезоэлектриков, допускающих использование ОПП, за счет других классов гексагональной и тетрагональной симметрии. Ниже обсуждается распространение электрозвуковых волн в структуре с конечной щелью пары одинаковых пьезоэлектриков класса 6 (4, 6 mm, 4 mm, ∞ mm), претерпевающих ОПП и имеющих общую ориентацию главных (полярных) направлений 6 (4).

1. Исходные уравнения и граничные условия

В геометрии задачи на рис. 1 принято, что оба кристалла (как движущийся, номера j = 1, так и неподвижный, номера *j* = 2) принадлежат к общему классу симметрии 6 (4) и имеют одинаковую ориентацию кристаллографических осей 6 (4) перпендикулярно плоскости рисунка. Исходные уравнения выглядят одинаково в соответственных системах покоя кристаллов - лабораторной системе отсчета x0yz для нижнего (y < -h) и попутной $ilde{x}0 ilde{y} ilde{z}$ системе отсчета для верхнего (y > h) кристалла. Учитывая поляризацию сдвиговых смещений u_i по оси z и то обстоятельство, что добавление для кристаллов класса 6 в матрицу пьезомодулей кристаллов класса 6 mm (4 mm, ∞ mm) компонент $e_{14} = -e_{25}$ отразится только в граничных условиях задачи, этим уравнениям, следуя [9], придадим в координатах лабораторной системы отсчета вид

$$\left(\delta_{1j} V \frac{\partial}{\partial x} + \frac{\partial}{\partial t} \right)^2 u_j = c^2 \nabla^2 u_j,$$

$$\nabla^2 \Phi_j = 0, \quad \phi_j = \frac{4\pi e_{1,5}}{\varepsilon} u_j + \Phi_j.$$

$$(1)$$

Здесь величина $c^2 = c_{44}^* / \rho$ представляет квадрат скорости сдвиговых волн в материале пьезоэлектриков с «ужесточенным» за счет пьезоэффекта модулем упругости $c_{44}^* = c_{44} + 4\pi e_{1,5}^2 / \varepsilon$, пьезомодулем $e_{1,5}$, диэлектрической проницаемостью ε и плотностью ρ . Величины ϕ_j и Φ_j имеют смысл потенциалов полного электрического поля и поля приграничных электрических колебаний, V – скорость ОПП, δ_{1j} – символ Кронекера, ∇^2 – оператор Лапласа.

Уравнения (1) следует решать совместно с уравнением Лапласа

$$\nabla^2 \Phi_0 = 0 \tag{2}$$

для потенциала Φ_0 электрического поля, возникающего в зазоре (|y| < h, 2h – толщина за-

зора) между кристаллами. Кроме этого, на неметаллизированных границах кристаллов $y = \pm h$ должны соблюдаться требования непрерывности потенциалов и нормальных составляющих $D_y^{(j)}$ векторов электрической индукции, а сдвиговые напряжения $T_{yz}^{(j)}$ должны отсутствовать.

Из уравнений пьезоэффекта для кристаллов класса 6 (4) следуют выражения:

$$D_{y}^{(j)} = 4\pi \left(e_{1,5} \frac{\partial u_{j}}{\partial y} - e_{1,4} \frac{\partial u_{j}}{\partial x} \right) - \varepsilon \frac{\partial \varphi_{j}}{\partial y} ,$$

$$T_{yz}^{(j)} = c_{44} \frac{\partial u_{j}}{\partial y} + \left(e_{1,5} \frac{\partial \varphi_{j}}{\partial y} + e_{1,4} \frac{\partial \varphi_{j}}{\partial x} \right) .$$
(3)

Они не содержат производных по времени и поэтому справедливы в любых инерциальных системах отсчета – следовательно, пригодны для представления нормальных составляющих электрической индукции и сдвигового напряжения в лабораторной системе отсчета для обоих кристаллов. Вторые члены в круглых скобках выражений (3) представляют пьезоэлектрический вклад, специфичный именно для кристаллов класса 6 – т. н. «поперечный пьезоэффект» [12], который обычно выражен слабо. По этой причине им иногда пренебрегают [5], не делая специальной оговорки.

С учетом последнего равенства (1) и выражений (3) граничные условия запишутся следующим образом:

$$\begin{split} \left. \left(\frac{4\pi e_{1,5}}{\varepsilon} u_j + \Phi_j \right) \right|_{y=(-1)^{j+1}h} &= \Phi_0 \Big|_{y=(-1)^{j+1}h} ,\\ \left(4\pi e_{1,4} \frac{\partial u_j}{\partial x} + \varepsilon \frac{\partial \Phi_j}{\partial y} \right) \Big|_{y=(-1)^{j+1}h} &= \frac{\partial \Phi_0}{\partial y} \Big|_{y=(-1)^{j+1}h} ,\\ \left[c_{44}^* \frac{\partial u_j}{\partial y} + \frac{4\pi e_{1,4} e_{1,5}}{\varepsilon} \frac{\partial u_j}{\partial x} + \right. \\ \left. + \left(e_{1,5} \frac{\partial \Phi_j}{\partial y} + e_{1,4} \frac{\partial \Phi_j}{\partial x} \right) \right] \Big|_{y=(-1)^{j+1}h} &= 0. \end{split}$$

2. Решение граничной задачи

Решение уравнений (1), (2) ищем в виде волн, распространяющихся вдоль границ структуры $y = \pm h$, сообразно чему потребуем, чтобы величины u_j , Φ_j и Φ_0 были пропорциональны общему экспоненциальному множителю $\exp[i(kx - \omega t)]$, где k – волновое число, а ω – циклическая частота электрозвуковой волны в лабораторной системе отсчета. С учетом ограниченности сдвиговых смещений и электрических потенциалов получим

$$u_{1} = U_{1} \exp(i\phi) \exp(-s_{1}y),$$

$$\Phi_{1} = F_{1} \exp(i\phi) \exp(-ky),$$

$$u_{2} = U_{2} \exp(i\phi) \exp(s_{2}y),$$

$$\Phi_{2} = F_{2} \exp(i\phi) \exp(ky),$$

$$\Phi_{0} = \exp(i\phi)[A \exp(ky) + B \exp(-ky)],$$

$$\phi = kx - \omega t.$$
(5)

Величины $s_{1,2}$ в формулах (5) определяются равенствами

$$s_{1} = \left[k^{2} - \left(k\beta - \frac{\omega}{c}\right)^{2}\right]^{1/2},$$

$$s_{2} = \left(k^{2} - \frac{\omega^{2}}{c^{2}}\right)^{1/2}, \quad \beta = \frac{V}{c}$$
(6)

и имеют смысл коэффициентов амплитудного спадания сдвиговых смещений с изменением поперечной координаты в соответствующем кристалле по мере удаления от границы.

Подстановка выражений (5) в граничные условия (4) приводит к системе однородных алгебраических уравнений относительно амплитуд $U_{1,2}$, $F_{1,2}$, A и B. Из требования ее разрешимости получаем искомое дисперсионное соотношение для щелевых волн в слоистой структуре пьезоэлектриков класса 6 с вакуумной щелью в условиях ОПП:

$$\begin{bmatrix} (\mathcal{K}^2 - \varepsilon \mathcal{K}_{\perp}^2) - (1 + \varepsilon) \frac{s_2}{k} \end{bmatrix} \times \\ \times \begin{bmatrix} (\mathcal{K}^2 - \varepsilon \mathcal{K}_{\perp}^2) - (1 + \varepsilon) \frac{s_1}{k} \end{bmatrix} = \\ = e^{-4\xi} \begin{bmatrix} (\mathcal{K}^2 + \varepsilon \mathcal{K}_{\perp}^2) - (1 - \varepsilon) \frac{s_2}{k} \end{bmatrix} \times \\ \times \begin{bmatrix} (\mathcal{K}^2 + \varepsilon \mathcal{K}_{\perp}^2) - (1 - \varepsilon) \frac{s_1}{k} \end{bmatrix}.$$
(7)

Здесь $\xi = kh$, а величины $\mathcal{K}_{\perp}^2 = 4\pi e_{1,4}^2 / (c_{44}^*\varepsilon)$, $\mathcal{K}^2 = 4\pi e_{1,5}^2 / (c_{44}^*\varepsilon)$ представляют собой квадраты коэффициентов электромеханической связи кристаллов для поперечного [12] и продольного

пьезоэффекта соответственно. Вместе с выражениями (5), (6) оно полностью определяет структуру и дисперсионные свойства щелевых волн. В частности, если в (7) величины s_1 и s_2 выразить согласно (6), то данное равенство примет вид трансцендентного уравнения, корни которого дают стандартную форму $\omega = \omega(k)$ дисперсионной зависимости. Видно также, что в пределе $\xi \rightarrow \infty$, когда сцепление кристаллов электрическими полями через зазор исчезает, уравнение (7) определяет спектры электрозвуковых волн на свободной границе одиночных пьезоэлектриков класса 6 в виде характерной (см. [13, 14]) пропорциональной связи величин s_i и k.

3. Дисперсионные спектры мод щелевых волн в отсутствие ОПП

В отсутствие ОПП $\beta = 0$ из (6) получаем $s_1 = s_2 \equiv s$. Произведения величин в квадратных скобках уравнения (7) образуют тогда их квадраты. Соответственно, извлекая корни в обеих сторонах равенства, можно вдвое понизить порядок уравнения и получить с учетом знака корней известные результаты работ [2, 3]:

$$s_{+} = k \frac{\mathcal{K}^{2} - \varepsilon \mathcal{K}_{\perp}^{2} \operatorname{cth}(\xi)}{1 + \varepsilon \operatorname{cth}(\xi)},$$

$$s_{-} = k \frac{\mathcal{K}^{2} \operatorname{cth}(\xi) - \varepsilon \mathcal{K}_{\perp}^{2}}{\operatorname{cth}(\xi) + \varepsilon}.$$
(8)

Формулы (8) описывают спектры симметричной (s_+) и антисимметричной (s_-) моды щелевой электрозвуковой волны, называемые так в соответствии с характером распределения электрического потенциала Φ_0 поперек зазора. В частном случае пьезоэлектриков класса 6 mm, когда поперечная пьезоактивность отсутствует $(\mathcal{X}^2_{\perp} = 0)$, выражения (8) переходят, как следовало ожидать, в формулы работы [2].

Преимуществом представления спектра щелевых электрозвуковых волн формулами (8) является то обстоятельство, что при установлении их дисперсионных свойств отпадает необходимость численного решения трансцендентных уравнений. Так, определив расчетом *s* для избранного значения *k*, последующим использованием формул (6) можно всегда установить соответствующее этому *k* (и этому *s*) значение ω , а далее рассчитать фазовую скорость волны $v = \omega/k$. Другое достоинство формул (8) заключается в явном разделении спектра по модам.

Стандартные спектры мод щелевых электрозвуковых волн в виде зависимостей $\omega = \omega(k)$

Рис. 2. Общая картина спектров локализации мод щелевых электрозвуковых волн в структуре идентичных неподвижных кристаллов класса 6

не наглядны для графического представления. Поэтому здесь и в следующих разделах с целью изображения используются спектры локализации мод в виде зависимостей s = s(k) или дисперсионные спектры фазовых скоростей $v = v(\omega)$.

На рис. 2 показаны типичные спектры локализации мод щелевых электрозвуковых волн для двух одинаковых неподвижных кристаллов с параметрами $\mathcal{K}^2 = 0.3$, $\varepsilon = 6$ и $\mathcal{K}_{\perp}^2 = 0$ (кривые 1), $\mathcal{K}_{\perp}^2 = 0.01$ (кривые 2), $\mathcal{K}_{\perp}^2 = 0.03$ (кривые 3), $\mathcal{K}_{\perp}^2 = 0.049$ (кривые 4). В каждом случае картина спектров образуется парой ветвей, верхняя из которых соответствует антисимметричной моде s_- . Нижние ветви парных кривых 1–4 соответствуют менее локализуемой симметричной моде s_+ ($s_+ < s_-$). Они имеют, выделенные точками I, II, III, нижнюю отсечку спектра $\xi^* = (kh)^*$, которая устанавливается по условию $s_+ = 0$, согласно (8), равенством

$$\xi^* = \operatorname{Arth}\left(\varepsilon \frac{\mathcal{H}_{\perp}^2}{\mathcal{H}^2}\right). \tag{9}$$

Отрезки штриховых линий рис. 2 изображают фрагменты линейного спектра $s = k(\mathcal{H}^2 - \varepsilon \mathcal{H}_{\perp}^2) / /(1 + \varepsilon)$ электрозвуковой волны на неметаллизированной границе пьезоэлектрического кристалла [13, 14]. По отношению к ветвям мод 1–4 щелевой электрозвуковой волны этот спектр выступает в пределе $\xi \to \infty$ в качестве общей асимптоты. Таким образом, при больших h или на высоких частотах (для кривых рис. 2 при kh > 3) щелевые волны ведут себя практически подобно электрозвуковым волнам на поверхности одиночного пьезокристалла.

Выражение (9) показывает, что величина ξ^* определяется относительным вкладом поперечного пьезоэффекта в пьезоактивность кристалла. Для пьезоэлектриков класса 6 mm (4 mm, ∞ mm) поперечная пьезоактивность отсутствует, и поэтому $\xi^* = 0$, т. е. симметричная мода (см. нижнюю ветвь кривых 1) существует наравне с антисимметричной модой во всем спектральном диапазоне. Напротив, для пьезоэлектриков класса 622 (422), обладающих только поперечной пьезоактивностью, равенство (9) не может удовлетвориться, свидетельствуя об отсутствии симметричной моды вообще. Антисимметричная мода в этих условиях ($\mathcal{K}^2 = 0$) также не реализуется, но уже по причине, вытекающей из (8) отрицательности коэффициента граничной локализации колебаний: *s*_ < 0.

Из сравнения кривых 1–3 рис. 2 видно, что с усилением поперечной пьезоактивности кристалла на фоне преобладающей его продольной пьезоактивности асимптоты испытывают все больший наклон. В пределе $\varepsilon \mathcal{K}_{\perp}^2 \to \mathcal{K}^2$, когда продольная пьезоактивность компенсируется, асимптота спектра мод сливается с горизонтальной осью. Поэтому сохраняющаяся в этих условиях в единственном экземпляре ветвь антисимметричной моды (согласно (9), при $\varepsilon \mathcal{K}_{\perp}^2 \to \mathcal{K}^2$ имеем $\xi^* \to \infty$, т. е. симметричная мода отсутствует), показанная на рис. 2 мелкими косыми крестиками, асимптотически приближается к горизонтальной оси.

4. Изменение спектров мод щелевых волн под влиянием ОПП

Помимо условий

$$\frac{v}{c} - 1 < \beta < \frac{v}{c} + 1, \quad -1 < \frac{v}{c} < 1, \tag{10}$$

обеспечивающих, согласно (6), вещественность и положительную определенность коэффициентов локализации $s_{1,2}$ щелевых волн, для существования корней уравнения (7) требуется, чтобы произведение величин в квадратных скобках в его левой стороне было положительно. Обозначая далее $Q = (\mathcal{K}^2 - \varepsilon \mathcal{K}_{\perp}^2)/(1+\varepsilon)$ и принимая во внимание выражения (6) в дополнение к условиям (10), получим:

$$\begin{cases} \frac{v}{c} < -\sqrt{1-Q^2} , & \left\{ \frac{v}{c} < \beta - \sqrt{1-Q^2} , \\ \frac{v}{c} > \sqrt{1-Q^2} , & \left\{ \frac{v}{c} > \beta + \sqrt{1-Q^2} , \right\} \end{cases}$$
(11)

или

Рис. 3. Области I–III существования решения уравнения (7), выделенные фоном

$$-\sqrt{1-Q^{2}} < \frac{v}{c} < \sqrt{1-Q^{2}},$$

$$\beta - \sqrt{1-Q^{2}} < \frac{v}{c} < \beta + \sqrt{1-Q^{2}}.$$
(12)

Совмещение условий (10), (11) или (10), (12) ограничим случаем прямо распространяющихся щелевых волн. Тогда из (10) следует, что 0 < v < c, а скорости ОПП лежат в интервале $-1 < \beta < 2$. На рис. 3 для выделенных интервалов изменения v и β показаны точечным фоном область I выполнения условий (12) и области II и Ш, в которых удовлетворяются условия (11). Область III интереса не представляет, поскольку, ввиду обычно выполняющихся для реальных кристаллов условий Q << 1, $\varepsilon \approx 10$, требует $\beta \approx 2$, весьма далеких от представляющих практический интерес значений $|\beta| << 1$.

В этом диапазоне β искажения профиля в распределении потенциала поперек щели вследствие ОПП будут малы, и в именованиях мод щелевых волн можно придерживаться сложившихся традиций. Численным решением уравнения (7) в области I установлено, что здесь получаются решения, которые соответствуют антисимметричной моде спектра. Область II содержит решения, описывающие симметричную моду.

На рис. 4 представлены типичные зависимости $v = v(\omega)$ антисимметричной моды при различных значениях β , полученные решением уравнения (7) в области I для слоистой структуры кристаллов класса 6 mm (4 mm) с параметрами $\mathcal{H}^2 = 0.3$, $\mathcal{H}^2_{\perp} = 0$, $\varepsilon = 6$. Штриховая кривая соответствует здесь зависимости s = s(k), показанной на рис. 2 верхней кривой 1 для случая $\beta = 0$. Видно, что спектры антисимметричной моды характеризуются нормальной дисперсией: $dv / d\omega > 0$. Влияние ОПП выражается при $\beta > 0$ их подъемом над штриховой кривой и, наоборот, — снижением при $\beta < 0$ ниже штриховой кривой. В высокочастотном пределе $\Omega \to \infty$ спектры попутного ОПП ($\beta > 0$) имеют общую асимптоту $v_{\infty} / c = \sqrt{1 - Q^2}$,

гис. 4. дисперсия фазовой скорости антисимметричной моды щелевой волны в структуре кристаллов с ОПП

соответствующую фазовой скорости волны Гуляева-Блюштейна на границе изолированного кристалла [13, 14]. Спектры встречного ОПП ($\beta < 0$) в силу того, что верхняя граница $\sqrt{1-Q^2}$ значений v/c заменяется, согласно (12), на $\sqrt{1-Q^2} + \beta$, имеют неодинаковые, линейно снижающиеся асимптоты $v_{\infty}/c = \sqrt{1-Q^2} + \beta$. Такое же снижение испытывают начальные точки спектров $v(0) = v(\omega \rightarrow 0) = v(h \rightarrow 0)$, которые, как показано в [9], подчиняются уравнению

$$\mathcal{K}^{2}\left[\sqrt{1-\frac{v^{2}}{c^{2}}}+\sqrt{1-\left(\beta-\frac{v}{c}\right)^{2}}\right]=$$

$$=2\sqrt{1-\frac{v^{2}}{c^{2}}}\sqrt{1-\left(\beta-\frac{v}{c}\right)^{2}}.$$
(13)

Существенно большие изменения спектров антисимметричной моды при $\beta < 0$, нежели в противном случае, уже отмечались в [9] для щелевой структуры с предельно тонким зазором. Данную разницу поведения спектров можно рассматривать как выраженное проявление щелевой структурой свойств невзаимности вследствие ОПП.

На рис. 5 для тех же параметров, что в случае рис. 4, представлены спектры симметричной моды щелевых волн из области II решений уравнения (7). В расчетах использовались весьма малые допустимые значения: $|\beta| \cong 10^{-4}$. Дисперсия фазовой скорости симметричной моды щелевых волн оказывается аномальной: $dv/d\omega < 0$. Ее высокочастотная асимптота v_{∞} варьируется теперь под влиянием попутного ОПП и, напротив,

T.14, №2

Рис. 5. Дисперсия фазовой скорости симметричной моды щелевой волны в структуре кристаллов с ОПП

остается неизменной на уровне спектра электрозвуковой волны Гуляева-Блюштейна для изолированного кристалла, если $\beta < 0$. Величина v_{∞} в случае $\beta > 0$, когда условия (11) сводятся к последнему из них, получится при замене знака неравенства равенством. Таким образом, как для антисимметричной моды в условиях $\beta < 0$, имеем $v_{\infty} / c = \sqrt{1 - Q^2} + \beta$.

Происходящее с ростом $\beta > 0$ «поджатие» асимптоты симметричной моды щелевой волны v_{∞} к верхнему пороговому уровню v = c, показанному на рис. 5 горизонтальной штриховой линией, сопровождается быстрым ростом низкочастотной отсечки спектра. Координаты точки отсечки (c, Ω^*) для спектральных кривых рис. 5 определяются из условий v = c, $s_2 = 0$, $\mathcal{X}_{\perp}^2 = 0$, что с подстановкой в (7) при учете равенств (6) дает

$$\Omega^* = \frac{1}{4} \ln \left[\frac{\mathcal{H}^2 + (\varepsilon - 1)\sqrt{\beta(2 - \beta)}}{\mathcal{H}^2 - (\varepsilon + 1)\sqrt{\beta(2 - \beta)}} \right].$$
 (14)

Из формулы (14) следует, что с приближением β к предельно допустимому значению $\beta^* = 1 - \sqrt{1 - Q^2}$, когда знаменатель дроби под знаком логарифма стремится к нулю, $\Omega^* \to \infty$. Напомним, что результаты, представленные на рис. 5 и описываемые формулами (13), (14), соответствуют кристаллам класса 6 mm (4 mm, ∞ mm). Для них в отсутствие ОПП отсечка спектра симметричной моды (см. нижнюю из кривых 1 на рис. 2 и штриховую кривую рис. 5, соответствующую случаю $\beta = 0$) не существует.

Общее сходство в изменении поведения симметричной и антисимметричной мод под влиянием ОПП ограничивается, пожалуй, тем, что попутное ОПП кристаллов (β > 0) всегда повышает, а встречное ОПП (β < 0) - понижает фазовую скорость щелевых волн. На рис. 5 это выражается отнюдь не квазитрансляционным, как на рис. 4, смещением при β < 0 спектральных кривых вниз, а снижением только верхнего порогового уровня фазовой скорости v_{max} при фиксировании нижнего уровня v высокочастотной асимптотой - спектром волны Гуляева - Блюштейна для изолированного кристалла. Причина в том, что, согласно (10), при встречном ОПП $\beta < 0$ вместо требования v < c начинает действовать не противоречащее ему более жесткое условие $v / c < \beta + 1$. Таким образом, частотная отсечка спектра симметричной моды уступает место отсечке спектра по фазовой скорости сверху. Соответствующую значению $v_{\max} = 1 + \beta$ пороговую частоту $\Omega^{**} = \Omega(v_{\max})$ – нижнюю границу спектра симметричной моды – можно найти подстановкой в (7) вместо v величины v_{max}:

$$\Omega^{**} = \frac{1+\beta}{4} \ln \left[\frac{\mathcal{H}^2 + (\varepsilon - 1)\sqrt{1 - (1+\beta)^2}}{\mathcal{H}^2 - (\varepsilon + 1)\sqrt{1 - (1+\beta)^2}} \right].$$
 (15)

При выводе формулы (15) учтено, что в (7), согласно (6), имеем:

$$\frac{s_1}{k} = \sqrt{1 - (\beta - v / c)^2}, \quad \frac{s_2}{k} = \sqrt{1 - (v / c)^2}.$$

Выражение (15) вместе с равенством $v_{\max} = 1 + \beta$ представляет параметрическую форму задания кривой, проходящей в спектральной плоскости

по точкам верхней отсечки спектров симметричной моды при непрерывном уменьшении β от нуля. На рис. 6 представлена серия подобных кривых для нескольких значений варьируемого параметра \mathcal{K}^2 . Видно, что диапазон изменения фазовой скорости симметричной моды для встречного ОПП существенно предопределяется степенью пьезоактивности кристаллов. При этом с выходом на высокочастотную асимптоту спектров (показаны штриховыми горизонтальными линиями) $\Omega^{**} \to \infty$.

5. Оценка возможности экспериментального обнаружения вариаций скорости щелевых волн под влиянием ОПП

Из проведенного выше анализа спектрального поведения щелевых волн в условиях ОПП кристаллов с очевидностью вытекает, что для экспериментальной проверки предпочтение следует отдать антисимметричной моде. Действительно, она лучше локализуется у границ кристаллов, существует на всех частотах и, при прочих равных условиях, демонстрирует сравнительно большие изменения фазовой скорости вследствие ОПП. Абстрагируясь от исполнения совместно с неподвижным кристаллом функции звукопровода, движущийся пьезоэлектрик будем рассматривать в качестве внешнего фактора, а нижний кристалл – как реагирующий на него сенсорный датчик. Тогда вопрос о возможности экспериментального обнаружения вариаций фазовой скорости щелевой волны под влиянием ОПП сводится к оценке пороговой чувствительного такого рода датчика.

В настоящее время датчики на поверхностных акустических волнах (ПАВ) применяют для измерения давления, температуры, влажности, концентрации газов в окружающей среде и ряда других параметров [15–17]. Принцип их действия основывается на изменениях скорости распространения ПАВ под влиянием внешних полей или нагрузок на звукопровод. Соответственно этому способность ПАВ-датчика реагировать на воздействие принято оценивать относительным изменением скорости ПАВ $\Delta v / v$, рассматриваемым в качестве функции измеряемого параметра, а также конструктивных показателей и эксплуатационных характеристик устройства.

Для современных ПАВ-сенсоров минимальные значения $\Delta v / v$, определяющие порог их чувс-

твительности, лежат несколько ниже уровня 10^{-6} (варьируются в пределах от 10^{-8} до 10^{-6} в зависимости от диапазона частот, избираемого типа ПАВ и измеряемого параметра [16]). Воспользуемся данной величиной $(\Delta v / v)_{\rm min} = 10^{-6}$ в качестве порога чувствительности щелевой структуры, рассматриваемой как обобщенное ПАВ-устройство, чтобы оценить возможность использования антисимметричной моды для регистрации скорости ОПП.

В простейшем случае предельно тонкой щелевой структуры, образуемой парой одинаковых пьезокристаллов, фазовая скорость v антисимметричной моды удовлетворяет равенству (13). Представляя v в (13) как $v = v_0 + \Delta v$ и учитывая, что фазовая скорость антисимметричной моды в отсутствие ОПП определяется равенством $\mathcal{H}^2 = \sqrt{1 - v_0^2 / c^2}$, получим:

$$\frac{2}{\mathcal{K}^{2}} = \frac{1}{\sqrt{1 - \frac{v_{0}^{2}}{c^{2}} \left(1 + \frac{\Delta v}{v_{0}}\right)^{2}}} + \frac{1}{\sqrt{1 - \left[\beta - \frac{v_{0}}{c^{2}} \left(1 + \frac{\Delta v}{v_{0}}\right)\right]^{2}}}.$$
(16)

Величина $\Delta v / v_0$ в (16) не что иное, как относительное изменение фазовой скорости щелевой волны вследствие ОПП. Равенство (16) поэтому можно рассматривать как неявную форму задания зависимости $\Delta v / v_0$ от β с вытекающей отсюда возможностью определения параметра β и тех минимальных скоростей ОПП, при которых еще гарантируется регистрация изменений v на заданном уровне чувствительности $\Delta v / v_0 = const.$

В связи со сказанным целесообразно выразить величину β явным образом из (16), где, в свою очередь, степени отношения v_0/c заменим согласно равенствам $v_0/c = \sqrt{1 - \mathcal{K}^4}$, $(v_0/c)^2 = 1 - \mathcal{K}^4$. После элементарных преобразований получим:

$$\beta = \sqrt{1 - \mathcal{K}^{4}} \left(1 + \frac{\Delta v}{v_{0}} \right) - \left(1 - \mathcal{K}^{4} \frac{1 - (1 - \mathcal{K}^{4}) \left(1 + \frac{\Delta v}{v_{0}} \right)^{2}}{\left[2\sqrt{1 - (1 - \mathcal{K}^{4}) \left(1 + \frac{\Delta v}{v_{0}} \right)^{2}} - \mathcal{K}^{2} \right]^{2}} \right)^{2}$$
(17)

Для оценки минимальных (на пороге чувствительности щелевой структуры к изменениям фазовой скорости щелевых волн под влиянием ОПП) значений β величину отношения $\Delta v / v_0$ следует полагать предельно малой. Поскольку такая оценка имеет заведомо ориентировочный характер, малыми величинами $\Delta v / v_0 <<1$ под знаком корня во втором члене формулы (17) можно без особого ущерба пренебречь и получить

$$\beta \cong \sqrt{1 - \mathcal{H}^4} \, \frac{\Delta v}{v_0}.\tag{18}$$

Отсюда для минимально допустимых скоростей ОПП, соответствующих упомянутому выше порогу чувствительности ПАВ-устройств $(\Delta v / v)_{\rm min} = 10^{-6}$ на частотах $f \sim 100$ МГц, находим оценку

$$V_{\min} \cong \sqrt{1 - \mathcal{K}^4} 10^{-6} c.$$
 (19)

Таблица

Результаты расчетов V_{min} по формуле (19) для ряда пьезоэлектриков классов 6 mm (4 mm, ∞ mm) с параметрами, приведенными в [11, 18], сведены в таблицу. Видно, что практически для всех пьезоэлектриков минимальная скорость ОПП не превышает 3 мм/с. Таким образом, с использованием щелевых волн представляется возможным регистрировать скорости ОПП в большей части миллиметрового диапазона скоростей и выше. Учитывая частотность выхода ПАВ-устройства, т. е. пропорциональность относительных изменений скорости ПАВ $\Delta v / v_0$ относительным изменениям частоты $\Delta f / f_0$, следует помнить, что желательное для достижения оптимальной толщины зазора $h \cong v_0 \, / \, f_0$ понижение частоты f₀ в то же время будет способствовать повышению порогового значения V_{min}.

Пьезоэлектрик	Класс симметрии	с, см/с	\mathcal{K}^2	$V_{\min},$ см/с
α-ZnS	6 mm	$2.82 \cdot 10^5$	0.003	0.282
CdS	6 mm	$1.8\cdot 10^5$	0.00355	0.179
α -CdSe	6 mm	$1.52\cdot 10^5$	0.019	0.152
ZnO	6 mm	$2.89\cdot 10^5$	0.100	0.288
BaTiO ₃	4 mm	$3.13 \cdot 10^5$	0.271	0.301
PZT-4	∞ mm	$2.56\cdot 10^5$	0.481	0.255
PZT-5	∞ mm	$2.26\cdot 10^5$	0.469	0.200
BaTiO ₃	∞ mm	$3.17 \cdot 10^5$	0.230	0.308

Список литературы

- Gulyaev Yu.V., Plessky V.P. Shear surface acoustic waves in dielectric in the presence of an electric field // Physics Letters. 1976. V. 56A. № 6. P. 491-492.
- Гуляев Ю.В., Плесский В.П. Щелевые акустические волны в пьезоэлектрических материалах // Акустический журнал. 1977. Т. 23. № 5. С. 716-723.
- Балакирев М.К., Горчаков А.В. Связанные поверхностные волны в пьезоэлектриках // Физика твердого тела. 1977. Т. 19. № 2. С. 613-615.
- Экспериментальное исследование щелевых волн в LiJO₃ / М.К. Балакирев [и др.] // Физика твердого тела. 1979. Т. 21. № 8. С. 2508–2510.
- 5. Пятаков П.А. Щелевые акустические волны на границе двух пьезоэлектрических кристаллов, разделенных сло-

ем жидкости // Акустический журнал. 2001. Т. 47. № 6. С. 836-842.

- Melkumyan A., Mai Yiu-Wing. Electroelastic gap waves between dissimilar piezoelectric materials in different classes of symmetry // International Journal of Solids and Structures. 2009. V. 46. № 21. P. 3760-3770.
- Li X.F., Yang J.S. Piezoelectric gap waves between a piezoceramic half-space and a piezoceramic plate // Sensors and Actuators. 2006. V. 132A. № 2. P. 472-479.
- Yang J.S. Acoustic gap waves in piezoelectromagnetic materials // Mathematics and Mechanics of Solids. 2006. V. 11. № 5. P. 451-458.
- Гуляев Ю.В., Марышев С.Н., Шевяхов Н.С. Электрозвуковая волна в зазоре пьезоэлектрической пары с относительным продольным перемещением // Письма в ЖТФ. 2006. Т. 32. № 20. С. 18-26.

- Recent Advances in Mechatronics / by eds R. Jablonski, M. Turkowski, R. Szewczyk. Berlin; Heidelberg: Springer-Verlag, 2007. 693 p.
- Зеленка И. Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах. М.: Мир, 1990. 584 с.
- Лямов В.Е. Поляризационные эффекты и анизотропия взаимодействия акустических волн в кристаллах. М.: Изд. МГУ, 1983. 224 с.
- Гуляев Ю.В. Поверхностные электрозвуковые волны в твердых телах // Письма в ЖЭТФ. 1969. Т. 9. № 1. С. 63-65.

- Bleustein J.L. A new surface wave in piezoelectric materials // Applied Physics Letters. 1968. V. 13. № 12. P. 412-413.
- Verona E., Caliendo C., D'Amico A. SAW Gas Sensors / ed. G. Sberveglieri. London: Kluwer, 1992. 281 p.
- 16. Анисимкин В.И., Котелянский И.М., Верона Э. Анализ газов и индуцируемых ими поверхностных процессов с помощью поверхностных акустических волн // ЖТФ. 1998. Т. 68. № 2. С. 73-81.
- 17. Джексон Р. Новейшие датчики. М.: Техносфера, 2007. 384 с.
- Акустические кристаллы: справочник / ред. М.П. Шаскольская. М.: Наука, 1982. 632 с.

Electroacoustic gap waves in a layered structure of relative moving piezoelectric crystals

E.A. Vilkov, S.N. Maryshev, N.S. Shevyakhov

The spectral-mode dispersion features of electroacoustic gap waves in the layered structure of piezoelectric crystals with a vacuum gap caused by their relative uniform motion are discussed. The opportunity of practical use of an antisymmetric mode of electroacoustic gap waves for development of sensor devices is shown. *Keywords*: electroacoustic waves, piezoeffect, mechanical relativity, gap structures.

Неганов, В.А.

В.А., Табаков Д.П., Яровой Г.П.

Современная теория

и практические применения антенн

Современная теория и практические применения антенн: монография / В.А. Неганов, Д.П. Табаков, Г.П. Яровой; предисловие академика Ю.В. Гуляева; под ред. В.А. Неганова. – М.: Радиотехника, 2009. – 720 с.

ISBN 978-5-88070-222-0

УДК 621.396.67 ББК 32.845

Рассмотрены основные разделы теории и техники антенн. Освещены вопросы расчета и построения различных типов антенн (от вибраторных до рупорных и антенных решеток, включая фазированные). Основное внимание уделено антеннам СВЧ и расчетам их электромагнитных полей в ближней зоне, т. е. вопросам электромагнитной совместимости.

Принципиальное отличие книги от известных заключается в последовательном применении метода физической регуляризации (самосогласованного метода) к расчету электромагнитного поля антенн, поз-

воляющего осуществлять непрерывный переход с излучающей поверхности антенны к пространству вне ее. С помощью самосогласованного метода получены новые результаты по теории антенн: установлены связь между поверхностной плотностью тока на вибраторной антенне и напряженностью электромагнитного поля, однонаправленный режим излучения для кольцевой (рамочной антенны), режимы стоячих и бегущих волн в цилиндрической спиральной антенне, входное сопротивление практически для всех типов антенн. Теоретический материал подкреплен примерами применения многолучевых антенн.

Предназначено для разработчиков антенно-фидерных устройств, аспирантов и докторантов, занимающихся вопросами проектирования антенных систем различного назначения, студентов радиотехнических специальностей высших учебных заведений.