Влияние дисперсности на магнитные свойства композитов полупроводник/ферромагнетик GaSb/MnSb

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние дисперсности на магнитные свойства сплавов системы GaSb–MnSb, полученных вакуумно-ампульным методом при различных скоростях охлаждения. Методами Дебая–Шеррера, оптической и электронной микроскопии на двух составах (мол. %) – эвтектическом 59 GaSb–41 MnSb и заэвтектическом 30 GaSb–70 MnSb – показано, что с увеличением скорости кристаллизации от 0.1 до 60°С/с размеры кристаллитов MnSb уменьшаются в ⁓10 раз, при этом более интенсивное уменьшение размеров кристаллитов происходило для эвтектического состава. Размер кристаллитов MnSb определял магнитные свойства сплавов. Сплавы являлись ферромагнетиками, при этом с ростом дисперсности изменялся характер магнетосопротивления и повышалась температура Кюри. Для эвтектического состава при скорости кристаллизации 60°С/с изменялся знак магнетосопротивление, оно становилось отрицательным, что свидетельствовует о появлении спиновой поляризации в сплаве. Величина магнитного поля насыщения при этом составила 0.13 Тл. Температурная зависимость сопротивления имела линейный характер как в отсутствие, так и при наличии магнитного поля. Композиты, полученные при высоких скоростях охлаждения, обладали более высокой однородностью распределения фаз, что важно для применения в качестве прекурсоров при изготовлении спин-поляризованных гранулированных структур.

Полный текст

Доступ закрыт

Об авторах

М. Джалолиддинзода

Национальный исследовательский технологический университет “МИСИС”; Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Автор, ответственный за переписку.
Email: muhammad.9095@mail.ru
Россия, Москва; Москва

А. И. Риль

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: muhammad.9095@mail.ru
Россия, Москва

А. Л. Желудкевич

Научно-практический центр Национальной академии наук Беларуси по материаловедению

Email: muhammad.9095@mail.ru
Белоруссия, Минск

М. А. Теплоногова

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: muhammad.9095@mail.ru
Россия, Москва

А. А. Биктеев

Национальный исследовательский ядерный университет “МИФИ”

Email: muhammad.9095@mail.ru
Россия, Москва

С. Ф. Маренкин

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: muhammad.9095@mail.ru
Россия, Москва

Список литературы

  1. Iqbal M.Z., Qureshi N.A., Hussain G. Recent Advancements in 2D-Materials Interface Based Magnetic Junctions for Spintronics // J. Magn. Magn. Mater. 2018. V. 457. P. 110–125. https://doi.org/10.1016/j.jmmm.2018.02.084
  2. Van D. P., Liu Z., Roy W.V., Motsnyi V.F., Sawicki M., Borghs G., Boeck D. J. Very High Spin Polarization in GaAs by Injection from A (Ga, Mn) As Zener Diode // Appl. Phys. Lett. 2004. V. 84. P. 3495–3497. https://doi.org/10.1063/1.1738515
  3. Ферт А. Происхождение, развитие и перспективы спинтроники // Успехи физ. наук. 2008. Т. 178. № 12. С. 1336–1348. https://doi.org/10.3367/UFNr.0178.200812f.1336
  4. Огнев А.В., Самардак А.С., Воробьев Ю.Д., Чеботкевич Л.А. Магнитная анизотропия Co/Cu/Co пленок с косвенной обменной связью // Физика твердого тела. 2004. Т. 46. № 6. С. 1054–1057.
  5. Baibich M. N., Broto J. M., Fert A., Nguyen Van Dau F., Petroff F., Etienne P., Creuzet G., Friederich A., Chazelas J. Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superlattices // Phys. Rev. Lett. 1988. V. 61. P. 2472–2475. https://doi.org/10.1103/PhysRevLett.61.2472
  6. Moodera J.S., Lisa R. Kinder, Terrilyn M. Wong, Meservey R. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions // Phys. Rev. Lett. 1995. V. 74. P. 3273–3276. https://doi.org/10.1103/PhysRevLett.74.3273
  7. Wang С., Cao Y., Kobayashi N., Ohnuma S., Masumoto H. Structure and Tunneling Magneto-Dielectric Properties of Co–SrF2 Nano Granular Thin Films // AIP Adv. 2021. V. 11. P. 085224. 1–6. https://doi.org/10.1063/5.0058707
  8. Furubayashi T., Nakatani I. Giant Magnetoresistance in Granular Fe MgF2 Films // J. Appl. Phys. 1996. V. 79. P. 6258–6260. https://doi.org/10.1063/1.362025
  9. Маренкин С.Ф., Новодворский О.А., Баранов В.В., Трухан В.М., Шёлковая Т.В., Струц А.М. Технология получения, электрические и Магнитные свойства пленок эвтектики системы GaSb–MnSb // Докл. Белорусского гос. ун-та информатики и радиоэлектроники (Доклады “БГУИР”). 2016. № 5 (99). С. 5–10.
  10. Кочура А.В., Захвалинский В.С., Аунг З.Х., Риль А.И., Пилюк Е.А., Кузьменко А.П., Аронзон Б.А., Маренкин С. Ф. Синтез магнетронным распылением и структура тонких пленок арсенида кадмия // Неорган. материалы. 2019. Т. 55. № 9. С. 933–940. https://doi.org 10.1134/S0002337X19090057
  11. Fedorchenko I.V., Kushkov A.R., Gaev D.S., Rabinovich O.I., Marenkin S.F., Didenko S.I., Legotin S.A., Orlova M.N., Krasnov A.A. Growth Method for AIIIBV and AIVBVI Heterostructures // J. Cryst. Growth. 2018. V. 483. P. 245–250. https://doi.org/10.1016/j.jcrysgro.2017.12.013
  12. Маренкин С.Ф., Новодворский О.А., Шорохова А.В., Давыдов А.Б., Аронзон Б.А., Кочура А.В., Федорченко И.В., Храмова О.Д., Тимофеев А.В. Cинтез магнитных пленок состава эвтектики системы GaSb–MnSb методом импульсного лазерного осаждения // Неорган. материалы. 2014. Т. 50. № 9. C. 973–978. https://doi.org 10.7868/S0002337X14090085
  13. Маренкин С.Ф., Изотов А.Д., Федорченко И.В., Новоторцев В.М. Синтез магнитогранулированных структур в системах полупроводник–ферромагнетик // Журн. неорган. химии. 2015. Т. 60. № 3. С. 343–348. https://doi.org 10.7868/S0044457X15030149
  14. Кузнецов Н.Т., Чудинова Н.Н., Розанов И.А. Анализ и синтез, гармония и контрапункт // Вестн. РАН. 2004. Т. 74. № 5. С. 460–476.
  15. Teramoto I., Van Run A.M.J.G. The Existence Region and the Magnetic and Electrical Properties of MnSb // J. Phys. Chem. Solids. 1968. V. 29. № 2. P. 347–352. https://doi.org/10.1016/0022-3697(68)90080-2
  16. Allen J.W., Mikkelsen J.C. Optical Properties of CrSb, MnSb, NiSb, and NiAs // Phys. Rev. B. 1977. V. 15. P. 2952–2960. https://doi.org/10.1103/PhysRevB.15.2952
  17. Aldous J.D., Burrows C.W., Sánchez A.M., Beanland R., Maskery I., Bradley M.K., Dias M.S., Staunton J.B., Bell G.R. Cubic MnSb: Epitaxial Growth of a Predicted Room Temperature Half-Metal // Phys. Rev. B. 2012. V. 85. P. 060403(R). https://doi.org/10.1103/PhysRevB.85.060403
  18. Coehoorn R., Haas C., de Groot R.A. Electronic Structure of MnSb // Phys. Rev. B. 1985. V. 31. P. 1980–1996. https://doi.org/10.1103/PhysRevB.31.1980
  19. Han G.C., Ong C.K., Liew T.Y. F. Magnetic and Magneto-Optical Properties of Mnsb Films on Various Substrates // J. Magn. Magn. Mater. 1999. V. 192(2). P. 233–237. https://doi.org/10.1016/S0304-8853(98)00545-9
  20. Лазарев В.Б., Шевченко В.Я., Гинберг Я.Х., Соболев В.В. Полупроводниковые соединения группы AIIBV. М.: Наука, 1978. 256 с.
  21. Akahane K., Yamamoto N., Gozu S., Ohtani N. Heteroepitaxial Growth of GaSb on Si (001) Substrates // J. Cryst. Growth. 2004. V. 264. P. 21–25. https://doi.org/10.1016/j.jcrysgro.2003.12.041
  22. Gobeli G.W., Allen F.G. Photoelectric Properties of Cleaved GaAs, GaSb, InAs, and InSb Surfaces, Comparison with Si and Ge // Phys. Rev. A. 1965. V. 137. Р. 245–254. https://doi.org/10.1103/PhysRev.137.A245
  23. Маренкин С.Ф., Трухан В.М., Труханов С.В., Федорченко И.В., Новоторцев В.М. Фазовые равновесия, электрические и магнитные свойства эвтектики системы GaSb–MnSb // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478–1483. https://doi.org 10.7868/S0044457X13110135
  24. Пашкова О.Н., Изотов А.Д., Саныгин В.П., Филатов А.В. Ферромагнетизм сплава GaSb (2% Mn) // Журн. неорган. химии. 2014. Т. 59. № 11. С. 1570–1573. https://doi.org 10.7868/S0044457X1411018X
  25. Маренкин С.Ф., Чернавский П.А., Риль А.И., Панкина Г.В., Федорченко И.В., Козлов В.В. Влияние дисперсности на калориметрические и магнитные свойства ферромагнитной фазы в композиционном сплаве эвтектического состава системы ZnSnAs2–MnAs // Журн. неорган. химии. 2019. Т. 64 № 12. С. 1258–1262. https://doi.org 10.1134/S0044457X19120080
  26. Глезер А.М., Пермякова И.Е. Нанокристаллы, закаленные из расплава. М.: ФИЗМАТЛИТ, 2012. 360 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Рентгенограммы образцов 59 мол. % GaSb–41 мол. % MnSb: vохл = 0.1 (I), 60°С/с (II) (а); увеличенный фрагмент рентгенограммы в области 2θ = 40° (б)

Скачать (67KB)
3. Рис. 2. Рентгенограммы образцов 30 мол. % GaSb–70 мол. % MnSb: vохл = 0.1 (I), 60°С/с (II) (а); увеличенный фрагмент рентгенограммы в области 2θ = 40° (б)

Скачать (75KB)
4. Рис. 3. Микроструктуры образцов состава 59 мол. % GaSb–41 мол. % MnSb, полученных при vохл = 0.1 (а), 60°С/с (б)

Скачать (768KB)
5. Рис. 4. Микроструктура закаленного образца состава 59 мол. % GaSb–41 мол. % MnSb с картированием элементного состава

Скачать (314KB)
6. Рис. 5. Температурные зависимости величины удельной намагниченности и магнитной восприимчивости образцов составов: 30 мол % GaSb–70 мол % MnSb, а — при vохл = 0.1°C/с; б — при vохл = 60°C/с

Скачать (209KB)
7. Рис. 6. Температурные зависимости удельной намагниченности образцов состава 59 мол. % GaSb–41 мол. % MnSb при vохл = 0.1 (а), 60°С/с (б)

Скачать (207KB)
8. Рис. 7. Магнетосопротивление композитов при Т = 300 K: 1 – 70 мол. % MnSb, 2 – 41 мол. % MnSb

Скачать (61KB)
9. Рис. 8. Температурные зависимости электрического сопротивления в интервале температур 85–300 К композитов 30 мол. % GaSb–70 мол. % MnSb (1, 2), 59 мол. % GaSb–41 мол. % MnSb (3, 4), полученных при vохл = 60°/с без магнитного поля (1, 3) и в магнитном поле 0.27 Тл (2, 4). 30мол % GaSb–70 мол % MnSb (1, 2); 59 мол % GaSb – 41 мол % MnSb (3, 4)

Скачать (67KB)

© Российская академия наук, 2024