Синтез, выращивание монокристаллов и электрофизические свойства соединений CuMBi3S6 и CuMEr3S6 (M–Pb, Ca, Eu, Yb)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Методами термического, рентгенофазового, микроструктурного анализов, измерением микротвердости и электрофизических свойств установлено образование соединений состава CuMBi3S6 и CuMEr3S6 (M – Eu, Pb, Yb, Ca). Показано, что полученные соединения изоструктурны, кристаллизуются в орторомбичесской сингонии (a = 11.201–11.236, b = 11.561–11.420, с = 4.003–3.966 Å, Z = 4, пр.гр. Pb21m, d = 4.17–3.570 г/см3) и относятся к структурному типу крупкаита CuPbBi3S6. Соединения типа CuMBi3S6 и CuMEr3S6 являются полупроводниками р-типа проводимости, вычислена их ширина запрещенной зоны.

Авторлар туралы

O. Aliyev

Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan

Email: iradam@rambler.ru
G. Javid Avenue, 113, Baku, Az 1143 Azerbaijan

D. Ajdarova

Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan

G. Javid Avenue, 113, Baku, Az 1143 Azerbaijan

V. Ragimova

Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan

G. Javid Avenue, 113, Baku, Az 1143 Azerbaijan

T. Maksudova

Institute of Catalysis and Inorganic Chemistry named after Academician M. Nagiev of the Ministry of Science and Education of the Republic of Azerbaijan

G. Javid Avenue, 113, Baku, Az 1143 Azerbaijan

Әдебиет тізімі

  1. Сhalcogenides: Advances in Research and Applications / Ed. Woodrow P. Nova Science, 2018. 103 p. https://doi.org/10.1039/B514640B
  2. Chands S., Sharma P. Synthesis and Сharacterization of Ag–Chalcogenide Nanoparticles for Possible Applications in Photovoltaies // Mater. Sci. Poland. 2018. V. 36. № 3. P. 375–380. https://doi.org/10.2478/msp-2018-0064
  3. Sanghoon X.L. Chalcogenides: From 3D to 2D and Beyond. Elsevier, 2019. 398 p. https://doi.org/10.1016/C2017-0-03585-1
  4. Каменский В.В., Шаренкова Н.В. Особенности свойств редкоземельных полупроводников // Физика и техника полупроводников. 2019. Т. 53. № 2. С. 158–160. https://doi.org/10.1134/S106378261902012X
  5. Ahluwalia G.K. Applications of Chalcogenides: S, Se and Te. Springer, 2016. 461 p. https://doi.org/10.1007/978-3-319-41190-3
  6. Min Jin, Siqi Lin, Wen Li, Zhiwei Chen, Rongbin Li et al. Fabrication and Thermoelectric Properties of Single – Crystal Argyrodite Ag8SnSe6 // Chem. Mater. 2019. V. 31(7). P. 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393
  7. Barbara K.H., Kai W., Yasar K., Trsitan D. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SnSe6 // Mater. Sci. Eng. 2017. P. 4833–4839. https://doi.org/10.1021/acs.chemmater.7b00767
  8. Lini L., Qing Jiao, Changgui Lin et al. Structural Characterization and Compositional Dependence of the Optical Properties of Ge–La–Ga–S Chalcogenide Glass System // Opt. Mater. 2018. V. 78. P. 295–301. https://doi.org/10.1016/j.optmat.2018.02.041
  9. El Naggar A.M., Albassam A.A., Lakshminatayana G., Halyan V.V. et al. Exploration of Nonlinear Optical Features of Ga2S3–La2S3 Glasses for Optoelectronic Applications // Glass Phys. Chem. 2017. V. 45. P. 467–471. https://doi.org/10.1134/S1087659619060142
  10. Zhang W., Liaw P.K., Zhang Y. Science and Technology in High-Entropy Alloys // Sci. China Mater. 2018. V. 61(1). P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
  11. Yang A., Sun M., Ren H., Lin H. Dy3+-doped Ga2S3–La2S3 Chalcogenide Glass for Mid-Infrared Fiber Laser Medium // J. Lumin. 2021. V. 237. P. 118169. https://doi.org/10.1016/j.jlumin.2021.118169
  12. Easo P.G., Dierk R., Robert O.R. High-Entropy Alloys // Nat. Rev. Mater. 2019. V. 4(2). P. 515–534. https://doi.org/10.1038/s41578-019-0121-4
  13. Jiang B., Yu Y., Cui J. et al. High-Entropy Stabilized with High Thermoelectric Performance // Science. 2021. V. 371(6531). P. 830–834. https://doi.org/10.1126/science.abe1292
  14. Oreshonkov A.S., Ararpin N.O., Shestakov N.P., Adichtchev S.V. Experimental and DFT Study of BaLaCuS3 Direct band gap semiconductor // Phys. Chem. Solids. 2021. V. 148. P. 109670. https://doi.org/1016/jpcs.2020.109670
  15. Andreev O.V., Atuchin V.V., Aleksandrovsky A.S., Denisenko Y.G., Zakharov B.A., Tyutunnik A.P., Habibullayev N.N., Velikanov D.A., Ulybin D.A., Shpindyuk D.D. Synthesis Structure and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er) // Crystals. 2022. V. 12. P. 17. https://doi.org/10.3390/cryst12010017
  16. Shahid O., Yadav S., Maity D., Deepa M., Niranjan M.K., Prakash J. Synthesis Crystal Structure DFT and Photovoltaic Studies of BaCeCuS3 // New J. Chem. 2023. V. 47. P. 5378–5389. https://doi.org/10.1039/D2NJ06301H
  17. Aliyev O.M., Ajdarova D.S., Maksudova T.F., Ragimova V.M., Bayramova S.T. Synthesis Growth of Monocrystals and Properties of the Compounds of PbLnCuS3 (Ln – La, Nd, Sm, Gd, Dy, Er) Type // Az. Chem. J. 2023. № 1. P. 183–190. https://doi.org/10.32737/0005-2531-2023-1-183-190
  18. Ruseikina A.V., Solovyov L.A., Grigoriev M.V., Andreev O.V. Crystal Structure Variations in the Series SrLnCuS3 (Ln = La, Pr, Sm, Gd, Er and Lu) // Acta Crystallogr. 2019. V. 75. P. 584–588. https://doi.org/10.1107/S2053229619004984
  19. Ruseikina A.V., Solovyov L.A., Galenko E.A., Grigoriev M.V. Kofined Crystal Structure of SrLnCuS3 (Ln = Er, Yb) // Rus. J. Inorg. Chem. 2018. V. 63. P. 1225–1231. https://doi.org/10.1134S0036023618090140
  20. Ruseikina A.V., Maxim V., Grigoriev M.V., Clocke R.J. et al. Synthesis Crystal Structure and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3. Experiment and Calculation // Materials. 2024. V. 17(10). P. 2284. https://doi.org/10.33901ma17102284
  21. Aliyev O.M., Ajdarova D.S., Ragimova V.M. et al. Phase Formation in the FeSb2S4–FeLn2S4 System, Synthesis and Properties of Compounds of the FeLnSbS4 (Ln = Nd, Er) Type // Chem. Problems. 2024. № 3(22). P. 361–368. https://doi.org/10.32737/2221-8688-2024-3-361-368
  22. Gulay L.D., Shemet V. Ya., Olekseyuk I.D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho and Er) System // J. Alloys Compd. 2007. V. 43(1–2). P. 77–84. https://doi.org/10.1016/j.jallcom.2006.05.029
  23. Aliev O.M., Bayramova S.T., Ajdarova D.S. et al. Synthesis and Properties of Synthetic Aykinite PbCuBiS3 Analogies // J. Condens. Matter. 2020. № 22(2). P. 182–189. https://doi.org/10.17308/kcmf.2020.22/2821
  24. Strobel S., Schleid T. Three Structures for Strontium Copper [I] Lanthanides [III] Selenides SrCuMSe3 (M – La, Gd, Lu) // J. Alloys Compd. 2006. V. 418. № 1–2. P. 80–85. https://doi.org/10.1016/j.jallcom.2005.09.090
  25. Agaeva R.M., Mammadov Sh.H., Azhdarova D.S., Ragimova V.M., Aliev O.M. Synthesis and Study of the Properties of Synthetic Analogues of the Mineral Naffildite with the Participation of Rare Earth Elements // J. Condens. Matter. 2022. V. 24(1). P. 3–10. https://doi.org/10.17308/kcmf.2022.24/9049

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025