On the effect of heating of two-phase alloyed brasses on morphological peculiarities of intermetallic inclusions

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changing the morphology of intermetallic inclusions a two-phase alloyed brass is studied during its heating in a hot deformation temperature range. During heating, the redistribution of elements between silicide inclusions and matrix solution is found to occur, which, in a temperature range of 750–830°С, results in the silicide surface exfoliation and loss of coherence.

Full Text

Restricted Access

About the authors

A. V. Svyatkin

Togliatti state university

Author for correspondence.
Email: astgl@mail.ru
Russian Federation, Togliatti, 445020

A. M. Gnusina

Togliatti state university

Email: astgl@mail.ru
Russian Federation, Togliatti, 445020

N. N. Gryzunova

Togliatti state university

Email: astgl@mail.ru
Russian Federation, Togliatti, 445020

References

  1. Левин Д.О., Сулицин А.В., Карева Н.Т., Галимов Д.М. Изучение влияния технологических условий изготовления латунных водозапорных устройств на качество готовых изделий // Вестник южно- уральского государственного ун-та. 2022. № 3. С. 28–47. https://doi.org/10.14529/met220303
  2. Пугачева Н.Б., Лебедь А.В. Влияние структуры прессованной трубной заготовки из латуни 59Cu-3,5Mn-2,5Al-0,5Fe-0,4Ni на характер разрушения при последующей горячей штамповке // Вестник Самарского государственного технического университета. Серия: Физико-математические науки. 2012. № 4. С. 180–187.
  3. Пугачева Н.Б., Худорожкова Ю.В., Трушина Е.Б., Герасимова А.В., Антенорова Н.П. Причины растрескивания штампованных заготовок из латуни ЛМцАЖН // Diagnostics, Resource and Mechanics of materials and structures. 2017. V. 4. P. 61–80.
  4. Пугачева Н.Б., Трушина Е.Б., Антенорова Н.П., Овчинников А.С., Лебедь А.В. Исследование характера и причин разрушения заготовок из сплава 58CU-34ZN-3MN-2AL после горячей штамповки // Вопр. материаловедения. 2014. № 1 (77). С. 56–64.
  5. Антипов В.В. Исследование фазового состава и повышение эксплуатационных характеристик марганцевых латуней, используемых в автомобильной промышленности: дис. к. т. н.: 05.16.01. Моск. гос. ин-т стали и сплавов. Москва, 2002. 201 с.
  6. Копыл М.Д., Тропотов А.В., Котляров И.В. Латунные сплавы для колец синхронизаторов совершенствуются // Автомобильная промышленность. 1999. № 10. С. 26–29.
  7. Святкин А.В. Влияние температуры нагрева под штамповку на склонность к растрескиванию заготовок из ЛМцАЖН 59-3,5-2,5-0,4-0,2 // Вектор науки ТГУ. 2018. № 3 (45). С. 48–56.
  8. Герасимова А.В. Разработка способов изменения структурного состояния и свойств деформируемой алюминий-железо-никель-кремнистой латуни: дис. к. т. н. Томск. [Место защиты: Ин-т физики прочности и материаловедения СО РАН]. 2018. 150 с.
  9. Ефремов Б.Н. Латуни. От фазового строения к структуре и свойствам. М.: ИНФРА-М, 2014. 312 с.
  10. Stavroulakis P., Toulfatzis A., Pantazopoulos G., Paipetis A. Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes // A Critical Review. Metals. 2022. V. 12. P. 246. https://doi.org/10.3390/met12020246
  11. Hentati N., Makni A., Elleuch R. Study of Failure Modes Affecting a Crimped Nut Related to Forging Process // J. Failure Analysis and Prevention. 2012. V. 12. P. 130–138.
  12. Левин Д.О., Сулицин А.В., Карева Н.Т., Галимов Д.М. Влияние химического состава латуни типа ЛС59–1 на качество водозапорных изделий // Вестник ЮУрГУ. Серия “Металлургия”. 2022. Т. 22. № 4. С. 38–55.
  13. Tropotov A.V., Pugacheva N.B., Ryazantsev Yu.V., Zhukova L.M. A study of residual stresses in products made of hard alloy of brass // Metal Sci.Heat Treatment. 2006. V. 47. № 1–2. P. 31–35. https://doi.org/10.1007/s11041-006-0039-5
  14. Смирнов С.В., Пугачева Н.Б., Тропотов А.В., Солошенко А.Н. Сопротивление деформации структурных составляющих сложнолегированной латуни // ФММ. 2001. Т. 91. № 2. С. 106–111.
  15. Смирнов С.В., Пугачева (Вандышева) Н.Б., Солошенко А.Н., Тропотов А.В. Исследование пластической деформации сложнолегированной латуни // Физика металлов и металловедение. 2002. Т. 93. № 6. С. 91–100.
  16. Пугачева (Вандышева) Н.Б., Тропотов А.В. Смирнов С.В., Кузьмин О.С. Влияние содержания железа в легированной латуни ЛМцАЖКС на состав и морфологию силицидов (Fe, Mn)5Si3 // ФММ. 2000. Т. 89. № 1. С. 62–69.
  17. Антипов В.В., Курбаткин И.И., Покровcкий П.Б., Райков Ю.Н., Горин А.Д. Влияние Al, Ni, Si на фазовый состав и механические свойства марганцевых латуней / Материалы в автомобилестроении. Ч. 1 Металлические материалы. Сборник докладов II международной научно-практической конференции 10-11 июля 2003 г. Тольятти: АО “АВТОВАЗ”, 2003. С. 223–228.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of sections of pipe blanks before heat treatment: a) general view of the microstructure; b) chains of irregularly shaped inclusions and rounded elliptical inclusions; c) rod-shaped inclusion; d) large irregularly shaped intermetallic compounds and an elliptical intermetallic compound; d) iron-aluminum nickelide.

Download (628KB)
3. Fig. 2. Distribution of aluminum, silicon, iron and nickel by inclusions of types 3 and 4.

Download (309KB)
4. Fig. 3. External appearance of crystals after quenching from 700°C: crystal growth from the rod (a); elliptical intermetallic and silicide with exfoliation (b); signs of solution ordering and a chain of elliptical inclusions with protruding edges (c).

Download (354KB)
5. Fig. 4. Image of inclusions after quenching from 750°C: a group of “star” or “rosette” type silicides and elliptical intermetallics with delamination of edges (a); elliptical silicide with a hole (b); rod-shaped intermetallic, star-shaped crystals (c).

Download (441KB)
6. Fig. 5. Image of intermetallics after quenching from 800°C: crumbled silicide (loss of coherence) (a); formation of a cavity in the silicide, “halo” – change in the microstructure around the silicide (b); rosette silicides with a halo (c); elliptical faceted silicides without signs of edge delamination (d).

Download (523KB)
7. Fig. 6. Image of silicides after quenching from 830°C: elliptical silicide with a hole, dislocations on the faces (a); elliptical faceted silicides without signs of face delamination (b); large rod-shaped silicide with cavity formation, no loss of coherence detected (c).

Download (444KB)
8. Fig. 7. Change in the concentration of aluminum in silicides (in wt.%) with increasing heating temperature.  – experimental points, average values ​​in particles of type 2 (▲), types 3, 4 () and type 5 (×).

Download (100KB)