Study of the processes of binding of chlorophenolic compounds in high-moor peat in the european north of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of the processes of sorption of various chlorophenolic compounds from aqueous solutions by high-moor peat and products of its sequential disassembly was carried out. Compounds with different degrees of chlorine substitution were used as model chlorophenolic compounds: 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. According to the results of chromatographic determination, it was established that the degree of binding of chlorophenolic compounds by the studied materials increases in the series: pentachlorophenol (10.9–15.5 μg/g peat, or 31.4–44.7%)–2,4,6-trichlorophenol (16.3–26.3 μg/g peat, or 47.6–76.7%)–2,4-dichlorophenol (19.6–34.6 μg/g peat, or 56.8–100%). An increase in the pH medium leads to an increase in the degree of dissociation of chlorophenolic compounds and their mobility, and ultimately to a decrease in the degree of their binding. The effect of pH is most pronounced for 2,4-dichlorophenol, which is characterized by the maximum pKa value.

Full Text

Restricted Access

About the authors

I. N. Zubov

Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: zubov.ivan@fciarctic.ru
Russian Federation, Arkhangelsk

E. S. Kolpakova

Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: kolpelen@yandex.ru
Russian Federation, Arkhangelsk

A. V. Velyamidova

Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: allavel@yandex.ru
Russian Federation, Arkhangelsk

A. S. Orlov

Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: alseror@yandex.ru
Russian Federation, Arkhangelsk

References

  1. Schleich B.N., Degering D., Unterricker S. // Radiochim. Acta. 2000. V. 88. P. 803. https://doi.org/10.1524/ract.2000.88.9-11.803
  2. Savichev O., Soldatova E., Rudmin M., Mazurov A. // Appl. Geochem. 2020. V. 113. № article 104519. P. 243. https://doi.org/10.1016/j.apgeochem.2019.104519
  3. Zubov I.N., Orlov A.S., Popovb A.N., Ponomareva T.I., Losyuk G.N. // Solid Fuel Chemistry. 2022. V. 56. № 5. P. 330. https://doi.org/10.3103/s0361521922050123
  4. Orlov A.S., Zubov I.N., Yakovlev E. Yu., Bogdanovich N.I. // Solid Fuel Chemistry. 2023. V. 57. № 5. P. 343. https://doi.org/10.3103/s0361521923050051
  5. Shevchenko V.P., Politova N.V., Lisitzin A.P. et al. // Dokl. Earth Sci. 2015. V. 465. № 2. P. 1272. https://doi.org/10.1134/S1028334X15120132
  6. Стокгольмская конвенция о стойких органических загрязнителях с поправками, внесенными в 2019 году [Электронный ресурс]. URL: http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx. Accessed 15 September 2021/ (дата обращения 20.10.2023).
  7. Зубов И.Н., Вельямидова А.В., Колпакова Е.С. // Экология и промышленность России. 2024. Т. 28. № 7. С. 37. https://doi.org/10.18412/1816-0395-2024-7-37-41
  8. AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Norway, Oslo: Arctic Monitoring and Assessment Programme (AMAP), 2015. 81 p.
  9. Батоев В.Б., Нимацыренова Г.Г., Дабалаева Г.С., Палицына С.С. // Химия в интересах устойчивого развития. 2005. Т. 13. № 1. C. 31.
  10. Колпакова Е.С., Вельямидова А.В. // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2019. № 3. С. 32. https://doi.org/10.31857/S0869-78092019332-41
  11. Xie T.M. // Chemosphere. 1983. V. 12. № 9/10. Р. 1183.
  12. Suntio L.R., Shiu W.Y., Mackay D. // Chemosphere. 1988. V. 17. Р. 1249. https://doi.org/10.1016/0045-6535(88)90080-x
  13. Lyytikäinen M. Transport bioavailability and effects of Ky-5 and CCA wood preservative components in aquatic environment: Ph.D. Dissertations in Biology. Finland: University of Joensuu, 2004. 102 p.
  14. Shellenberg K., Leuenberger C., Schwarzenbach R.P. // Environ. Sci. Technol. 1984. V. 18. № 9. Р. 652. https://doi.org/10.1021/es00127a005
  15. Christodoulatos C., Korfiatis G.P., Talimcioglu N.M., Mohiuddin M. // J. Environ. Sci. Health A. 1994. V. 29(5). Р. 883.
  16. ISO 14154:2005(E). Soil quality. Determination of some selected chlorophenols. Gas-chromatographic method with electron-capture detection. International standard, 2005. 15 p.
  17. Fingler S., Drevenkar V., Fröbe Z. // Arch. Environ. Contam. Toxicol. 2004. V. 48. № 1. P. 32. https://doi.org/10.1007/s00244-003-0185-3
  18. Bryant S.E., Schultz T.W. // Arch. Environ. Contam. Toxicol. 1994. V. 26. № 3. P. 299. https://doi.org/10.1007/BF00203555
  19. Fröbe Z., Fingler S., Drevenkar V., Juračić M. // Sci. Total Environ. 1994. V. 155. № 3. Р. 199. https://doi.org/10.1016/0048-9697(94)90499-5
  20. Lulu H., Jianzhong S., Ping'an P. // Environ. Pollut. 2008. V. 156. № 3. P. 769. https://doi.org/10.1016/j.envpol.2008.06.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of pH on the relative binding of 2,4-DCP by the studied materials.

Download (527KB)
3. Fig. 2. Effect of pH on the relative binding of 2,4,6-TCP by the studied materials.

Download (454KB)
4. Fig. 3. Effect of pH on the relative binding of PCP by the studied materials.

Download (385KB)

Copyright (c) 2025 Russian Academy of Sciences