Effect of gamma irradiation dose on papain toxicity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Study of the effect of a wide range of γ-irradiation doses from 250 to 3000 kGy on acute toxicity of papain when administered to laboratory animals. It was found for the first time that preliminary γ-irradiation of papain up to 1000 kGy reduces toxicity of its aqueous dispersions at intraperitoneal administration by more than five times. Further increase of irradiation dose up to 3000 kGy does not lead to a noticeable change in the toxic effect. The results of the study indicate that γ-irradiation of papain can be used to reduce its toxicity.

Texto integral

Acesso é fechado

Sobre autores

U. Allayarova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

S. Demidov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

S. Blokhina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

T. Rayevskaya

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

D. Mishchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

Yu. Omelchuk

Sevastopol National University

Email: sadush@icp.ac.ru

Sevastopol Institute for Nuclear Energy and Industry

Rússia, Sevastopol

S. Allayarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sadush@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Kamphuis I.G., Kalk K.H., Swarte M.B., Drenth J. // J.Mol. Biol. 1984. V. 179. P. 233.
  2. Wong D.W.S. Food enzymes: structure and mechanism. NY: Springer Science + Business Media, 1995. P. 139.
  3. Shouket H.A., Ameen I.A., Tursunov O., Kholikova Kh., Pirimov O., Kurbonov N. et al. // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 614. Article 012171.
  4. Mahajan R.T., Chaudhari G. // Int.J. Adv. Res. 2014. V. 2. P. 1173.
  5. Abu-Alruz K., Mazahreh A.S., Quasem J.M., Hejazin R.K., El-Qudah J.M. // Am.J. Agricult. Biol. Sci. 2009. V. 4. P. 173.
  6. Polaina J., MacCabe A.P. Industrial enzymes: structure, function, and applications. Dordrecht: Springer, 2007. 641 P.
  7. Pietrasik Z., Shand P.J. // Meat Sci. 2011. V. 88. P. 8.
  8. Bekhit A.A., Hopkins D.L., Geesink G., Franks P. // Crit.Rev. Food Sci. Nutr. 2014. V. 54. P. 1012.
  9. Beeley J.A., Yip H.K., Stevenson A.G. // Brit. Dental J.: BDJ online. 2000. V. 188. P. 427.
  10. Mohr H., Desser L. // BMC Compl. Altern. Med. 2013. V. 13. P. 231.
  11. Akila M., Sushama A., Ramanathan K. // Int.J. Pharm. Pharm. Sci. 2014. V. 6. P. 160.
  12. Fauziya S., Krishnamurthy R. // CIB Tech J. Pharm. Sci. 2013. V. 2. P. 25.
  13. Nguyen T.T., Shaw P.N., Parat M.O., Hewavitharana A.K. // J.Mol. Nutr. Food. Res. 2013. V. 57. P. 153.
  14. Manal E.E. // EC Clin.Exp. Anatomy. 2018. V. 1. P. 40.
  15. Mironov А.N., Sakaeva I.V., Sakanyan E.I., Bunyatyan N.D., Kovaleva E.L., Mitkina L.I. et al. // Vedomosti Scientific Centre of expertise of means of medical use. 2012. № 3. P. 56.
  16. Allayarov S.R., Rudneva T.N., Demidov S.V., Allayarova U.Yu., Chekalina S.D. // High Energy Chemistry. 2024. V. 58. № 5 (in publication).
  17. Mekapogu A.R. // J. Inst. Actuar. 1952. V. 78. P. 388.
  18. Berezovskaya I.V. // Chem.–Pharm. J. 2003. V. 37. P. 32.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The dose–effect curve after a single intraperitoneal injection of papain into BDF1 mice exposed to different doses of gamma radiation (kGy): 0 (a), 250 (b), 1000 (c), 2000 (d), 3000 (e).

Baixar (150KB)
3. 2. Survival of animals after intraperitoneal administration of an aqueous solution of unirradiated (a) and gamma-irradiated papain (250 kGy (b), 1000 kGy (c), 2000 kGy (d), 3000 kGy (e)) in different dosages (mg/kg): 400 (2), 500 (3), 700 (4), 800 (5), 1000 (6), 2000 (7), 2500 (8), 2800 (9), 3000 (10), 4000 (11), 5000 (12), 6000 (13). Control groups of animals (1) were intraperitoneally injected with distilled water without papain in the same volume.

Baixar (343KB)
4. 3. Changes in the average body weight of experimental animals during the control experiment (a, curve 1) and after intraperitoneal administration of unirradiated (a, (curve 2), b (curves 3, 4, 5)) and gamma-irradiated papain (250 kGy (c), 1000 kGy (g), 3000 kGy (d)) in dosages of 300 mg /kg (2), 500 mg /kg (3), 700 mg / kg (4), 800 mg / kg (5), 1000 mg / kg (6), 2000 mg / kg (7), 2500 mg / kg kg (8), 3000 mg / kg (9), 4000 mg / kg (10), 5000 mg / kg (11). Control groups of animals (1) were intraperitoneally injected with distilled water without papain in the same volume.

Baixar (262KB)
5. 4. Body weight changes in experimental animals treated with intragastric aqueous solution of unirradiated (a) and gamma-irradiated papain (b, c). The dose of preliminary gamma irradiation of papain (kGy): 250 (b), 2000 kGy (c). Intragastric administration of aqueous solutions of papain by means of a metal probe was performed once in doses (mg / kg): 5000 (1), 10 000 (2), 20 000 (3).

Baixar (195KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024