Диамидоаминовые комплексы циркония [(ArNCH2CH2)2NH]ZrBn2: синтез, молекулярная структура и влияние алкильных заместителей фрагмента Ar на каталитическую активность в (со)полимеризации этилена
- 作者: Поляков А.М.1, Виноградов А.А.1, Нифантьев И.Э.1, Ивченко П.В.1, Комаров П.Д.1, Садртдинова Г.И.1, Миняев М.Е.1, Самурганова Т.И.1
-
隶属关系:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- 期: 卷 65, 编号 1 (2025)
- 页面: 17-32
- 栏目: Articles
- URL: https://hum-ecol.ru/0028-2421/article/view/683051
- DOI: https://doi.org/10.31857/S0028242125010021
- EDN: https://elibrary.ru/LKYQQV
- ID: 683051
如何引用文章
详细
Новые диамидоаминовые комплексы циркония общей формулы [(ArNCH2CH2)2NH]ZrBn2 (Bn = CH2Ph), различающиеся числом и положением алкильных заместителей в арильном фрагменте, синтезированы и охарактеризованы методами 1H и 13C ЯМР-спектроскопии. С использованием рентгеноструктурного анализа доказана молекулярная структура этих комплексов. Полученные комплексы исследованы в гомогенной полимеризации этилена и сополимеризации этилена с гексеном-1 при активации модифицированным метилалюмоксаном (MMAO-12). В сополимеризации этилена с гексеном-1 в присутствии H2 комплекс [((1,2,3,4,5,6,7,8-октагидроантрацен-9-ил)NCH2CH2)2NH]ZrBn2 (Zr5) продемонстрировал наиболее выраженный положительный сомономерный эффект; при катализе комплексом [((2,4,6-изо-Pr3C6H2)NCH2CH2)2NH]ZrBn2 (Zr2) была достигнута максимальная степень внедрения гексена-1 в образующийся сополимер1.
全文:

作者简介
Андрей Поляков
Институт нефтехимического синтеза им. А.В. Топчиева РАН
编辑信件的主要联系方式.
Email: polyakov@ips.ac.ru
ORCID iD: 0009-0004-9464-8197
俄罗斯联邦, Москва
Александр Виноградов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-7113-4183
к.х.н., с.н.с.
俄罗斯联邦, МоскваИлья Нифантьев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0001-9151-1890
д.х.н., зав. лаб.
俄罗斯联邦, МоскваПавел Ивченко
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-0181-5952
д.х.н., в.н.с.
俄罗斯联邦, МоскваПавел Комаров
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0003-4181-5022
н.с.
俄罗斯联邦, МоскваГузелия Садртдинова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0009-0000-7528-5360
м.н.с.
МоскваМихаил Миняев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-4089-3697
к.х.н., с.н.с.
俄罗斯联邦, МоскваТатьяна Самурганова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: polyakov@ips.ac.ru
ORCID iD: 0000-0003-1918-0059
м.н.с.
俄罗斯联邦, Москва参考
- Sauter D.W., Taoufik M., Boisson C. Polyolefins, a Success Story // Polymers. 2017. V. 9. № 6. ID 185. https://doi.org/10.3390/polym9060185
- Jubinville D., Esmizadeh E., Saikrishnan S., Tzoganakis C., Mekonnen T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustain. Mater. Technol. 2020. V. 25. ID e00188. https://doi.org/10.1016/j.susmat.2020.e00188
- Qiao J.L., Guo M.F., Wang L.S., Liu D.B., Zhang X.F., Yu L.Q., Song W.B., Liu Y.Q. Recent advances in polyolefin technology // Polym. Chem. 2011. V. 2. P. 1611–1623. https://doi.org/10.1039/C5RA09052K
- Nifant’ev I.E., Salakhov I.I., Ivchenko P.V. Transition metal–(μ-Cl)–aluminum bonding in α-olefin and diene chemistry // Molecules. 2022. V. 27. № 21. ID 7164. https://doi.org/10.3390/molecules27217164
- Nifant’ev I.E., Komarov P.D., Sadrtdinova G.I., Safronov V., Kolosov N.A., Ivchenko P.V. Mechanistic insights of ethylene polymerization on phillips chromium catalysts // Polymers. 2024. V. 16. № 5. ID 681. https://doi.org/10.3390/polym16050681
- Chum P.S., Swogger K.W. Olefin polymer technologies—History and recent progress at the Dow Chemical company // Prog. Polym. Sci. 2008. V. 33. Is. 8. P. 797–819. https://doi.org/10.1016/j.progpolymsci.2008.05.003
- Baier M.C., Zuideveld M.A., Mecking S. Post-Metallocenes in the industrial production of polyolefins // Angew. Chem. Int. Ed. 2014. V. 53. P. 9722–9744. https://doi.org/10.1002/anie.201400799
- Shamiri A., Chakrabarti M.H., Jahan S., Hussain M.A., Kaminsky W., Aravind P.V., Yehye W.A. The Influence of ziegler-natta and metallocene catalysts on polyolefin structure, properties, and processing ability // Materials. 2014. V. 7. P. 5069–5108. https://doi.org/10.3390/ma7075069
- Bochmann M. The Chemistry of catalyst activation: the case of group 4 polymerization catalysts // Organometallics. 2010. V. 29. № 21. P. 4711–4740. https://doi.org/10.1021/om1004447
- Zaccaria F., Zuccaccia C., Cipullo R., Budzelaar P.H.M., Vittoria A., Macchioni A., Busico V., Ehm C. Methylaluminoxane’s molecular cousin: a well-defined and «complete» al-activator for molecular olefin polymerization catalysts // ACS Catal. 2021. V. 11. № 8. P. 4464–4475. https://doi.org/10.1021/acscatal.0c05696
- Scollard J.D., McConville D.H., Vittal J.J. Sterically demanding diamide ligands: synthesis and structure of d0 zirconium alkyl derivatives // Organometallics. 1995. V. 14. P. 5478–5480. https://doi.org/10.1021/om00012a009
- Baumann R., Schrock R.R. NMR-detection of living intermediates prepared from activated [NON]ZrMe2 ([NON]2− = [(t-Bu-d6-N-o-C6H4)2O]2−) and olefins // J. Organomet. Chem. 1998. V. 557. P. 69–75. https://doi.org/10.1016/S0022-328X(97)00734-1
- Schrock R.R., Schattenmann F., Aizenberg M., Davis W.M. Synthesis of group 4 complexes that contain the tridentate diamido ligands [(ArNCH2CH2)2O]2– (Ar = C6H3–Me2-2,6 or C6H3Pri2-2,6) // Chem. Commun. 1998. V. 2. P. 199–200. https://doi.org/10.1039/A706452G
- Graf D.D., Schrock R.R., Davis W.M., Stumpf R. Synthesis of zirconium complexes containing the tridentate diamido ligands [(t-Bu-d6-N-o-C6H4)2S]2− and [(i-PrN-o-C6H4)2S]2− // Organometallics. 1999. V. 18. P. 843–852. https://doi.org/10.1021/om980934k
- Mehrkhodavandi P., Bonitatebus P.J., Schrock R.R. A comparison of cationic zirconium methyl and isobutyl initiators that contain an arylated diamido-pyridine ligand for polymerization of 1-hexene. Elucidation of a dramatic «initiator effect» // J. Am. Chem. Soc. 2000. V. 122. P. 7841–7842. https://doi.org/10.1021/ja000772v
- Liang L.C., Schrock R.R., Davis W.M., McConville D.H. Synthesis of group 4 complexes that contain the diamidoamine ligands, [(2,4,6-Me3C6H2NCH2CH2)2NR]2– ([Mes2N2NR]2–; R = H or CH3), and polymerization of 1-hexene by activated [Mes2N2NR]ZrMe2 Complexes // J. Am. Chem. Soc. 1999. V. 121. P. 5797–5798. https://doi.org/10.1021/ja983636n
- Schrock R.R., Casado A.L., Goodman J.T., Liang L.C., Bonitatebus P.J., Davis W.M. Preparation and Activation of Complexes of the Type [((mesityl) NCH2CH2)2NX]ZrMe2 (X = H, Me) with [Ph3C][B(C6F5)4] or [PhNMe2H][B(C6F5)4] // Organometallics. 2000. V. 19. P. 5325–5341. https://doi.org/10.1021/om0004996
- Schrock R.R., Bonitatebus P.J., Schrodi Y. CH Bond activation in cations of the type {[(2,4,6-Me3C6H2NCH2CH2)2NMe]ZrR}+ and a simple solution that yields a catalyst for the living polymerization of 1-hexene // Organometallics. 2000. V. 20. P. 1056–1058. https://doi.org/10.1021/om000972f
- Oskam J.H., Lynn T.R., Morrison V.P. Polymerization catalyst compositions // Patent USA № US6656868B2 (A1). 2003.
- Yang Q., McDaniel M.P., Martin J.L., Ding E., Rohlfing D.C., Crain T.R. Novel Catalyst Systems and Methods of Making and Using Same // Patent USA № US2012059134A1 (B2). 2012.
- Faler C.A., Whalley M.T. Non-Aromatic Hydrocarbon Soluble Olefin Polymerization Catalysts and Use Thereof // Patent USA № US2023406967A1. 2023.
- Kuhlman R.L., Neilson B.M., Szul J.F., Munro I.M. Method of olefin polymerization using alkane-soluble non-metallocene precatalyst // Patent USA № US2021403615A1. 2021.
- Zalesskiy S.S., Ananikov V.P. Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis // Organometallics. 2012. V. 31. P. 2302–2309. https://doi.org/10.1021/om201217
- Mashima K., Tsurugi H. Tetrabenzylzirconium // Encyclopedia of Reagents for Organic Synthesis. 2013. https://doi.org/10.1002/047084289X.rn01555
- CrysAlisPro. Version 1.171.42 // Rigaku Oxford Diffraction. 2022.
- Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. V. 71(1). P. 3–8. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Cryst. C. 2015. V. 71(1). P. 3–8. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. // J. Appl. Cryst. 2009. V. 42(2). P. 339–341. https://doi.org/10.1107/S0021889808042726
- Liu T.M., Harrison I.R. A DSC method of measuring short-chain branching distribution in linear low density polyethylene // Thermochim. Acta. 1994. V. 233. № 1. P. 167–171. https://doi.org/10.1016/S0040-6031(99)80015-X
- Quijada, R., Scipioni, R.B., Mauler, R.S. Synthesis and characterization of ethylene-1-hexene copolymers using homogeneous Ziegler-Natta catalysts // Polym. Bull. 1995. V. 35. P. 299–306. https://doi.org/10.1007/BF00963127
- Karol F.J., Kao S.-C., Cann K.J. Comonomer effects with high-activity titanium- and vanadium-based catalysts for ethylene polymerization // J. Polym. Sci. A Polym. Chem. 1993. V. 31. P. 2541–2553. https://doi.org/10.1002/pola.1993.080311015
- Jiang B., Liu X., Weng Y., Fu Z., He A., Fan Z. Mechanistic study on comonomer effect in ethylene/1-hexene copolymerization with TiCl4/MgCl2 model Ziegler-Natta catalysts // J. Catal. 2019. V. 369. P. 324–334. https://doi.org/10.1016/j.jcat.2018.11.034
- Chien J.C.W., Nozaki T. Ethylene–hexene copolymerization by heterogeneous and homogeneous Ziegler–Natta catalysts and the «comonomer» effect // J. Polym. Sci. A Polym. Chem. 1993. V. 31. P. 227–237. https://doi.org/10.1002/pola.1993.080310127
- Quijada R., Galland G.B., Mauler R.S. The influence of the comonomer in the copolymerization of ethylene with α-olefins using C2H4[ind]2ZrCl2/methylaluminoxane as catalyst system // Macromol. Chem. Phys. 1996. V. 197. P. 3091–3098. https://doi.org/10.1002/macp.1996.021971003
- Irwin L.J., Reibenspies J.H., Miller S.A. A Sterically expanded “Constrained Geometry Catalyst” for highly active olefin polymerization and copolymerization: an unyielding comonomer effect // J. Am. Chem. Soc. 2004. V. 126, № 51. P. 16716–16717. https://doi.org/10.1021/ja044678g
- Soga K., Yanagihara H., Lee D.-h. Effect of monomer diffusion in the polymerization of olefins over Ziegler–Natta catalysts // Makromol. Chem. 1989. V. 190. P. 995–1006. https://doi.org/10.1002/macp.1989.021900508
- Seppälä J.V., Koivumäki J., Liu X. Co- and terpolymerization of ethylene with 1-butene and 1-decene by using Cp2ZrCl2-methylaluminoxane catalyst // J. Polym. Sci. A Polym. Chem. V. 31. P. 3447–3452. https://doi.org/10.1002/pola.1993.080311334
- Cruz V.L., Muñoz-Escalona A., Martinez-Salazar J. A theoretical study of the comonomer effect in the ethylene polymerization with zirconocene catalytic systems // J. Polym. Sci. A Polym. Chem. 1998. V. 36. P. 1157–1167. https://doi.org/ 10.1002/(SICI)1099-0518(199805) 36:7<1157::AID-POLA13>3.0.CO;2-6
- Wu Q., García-Peñas A., Barranco-García R., Cerrada M.L., Benavente R., Pérez E., Gómez-Elvira J.M. A New insight into the comonomer effect through NMR analysis in metallocene catalysed propene-co-1-nonene copolymers // Polymers. 2019. № 11. ID 1266. https://doi.org/10.3390/polym11081266
- Ivchenko P.V., Nifant’ev I.E., Ustynyuk L.Y., Ezerskii V.A. Regioselectivity of acid-catalyzed cyclization of 1-(3,4-dialkylaryl)-3-chloropropan-1-ones to indanones. Comparison of experimental data and results of computer simulation // Russ. Chem. Bull. 2009. V. 58. P. 929–935. https://doi.org/10.1007/s11172-009-0117-0
补充文件

注意
1 Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0028242125010021