Диамидоаминовые комплексы циркония [(ArNCH2CH2)2NH]ZrBn2: синтез, молекулярная структура и влияние алкильных заместителей фрагмента Ar на каталитическую активность в (со)полимеризации этилена

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Новые диамидоаминовые комплексы циркония общей формулы [(ArNCH2CH2)2NH]ZrBn2 (Bn = CH2Ph), различающиеся числом и положением алкильных заместителей в арильном фрагменте, синтезированы и охарактеризованы методами 1H и 13C ЯМР-спектроскопии. С использованием рентгеноструктурного анализа доказана молекулярная структура этих комплексов. Полученные комплексы исследованы в гомогенной полимеризации этилена и сополимеризации этилена с гексеном-1 при активации модифицированным метилалюмоксаном (MMAO-12). В сополимеризации этилена с гексеном-1 в присутствии H2 комплекс [((1,2,3,4,5,6,7,8-октагидроантрацен-9-ил)NCH2CH2)2NH]ZrBn2 (Zr5) продемонстрировал наиболее выраженный положительный сомономерный эффект; при катализе комплексом [((2,4,6-изо-Pr3C6H2)NCH2CH2)2NH]ZrBn2 (Zr2) была достигнута максимальная степень внедрения гексена-1 в образующийся сополимер1.

全文:

受限制的访问

作者简介

Андрей Поляков

Институт нефтехимического синтеза им. А.В. Топчиева РАН

编辑信件的主要联系方式.
Email: polyakov@ips.ac.ru
ORCID iD: 0009-0004-9464-8197
俄罗斯联邦, Москва

Александр Виноградов

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-7113-4183

к.х.н., с.н.с.

俄罗斯联邦, Москва

Илья Нифантьев

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0001-9151-1890

д.х.н., зав. лаб.

俄罗斯联邦, Москва

Павел Ивченко

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-0181-5952

д.х.н., в.н.с.

俄罗斯联邦, Москва

Павел Комаров

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0003-4181-5022

н.с.

俄罗斯联邦, Москва

Гузелия Садртдинова

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0009-0000-7528-5360

м.н.с.

Москва

Михаил Миняев

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0002-4089-3697

к.х.н., с.н.с.

俄罗斯联邦, Москва

Татьяна Самурганова

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: polyakov@ips.ac.ru
ORCID iD: 0000-0003-1918-0059

м.н.с.

俄罗斯联邦, Москва

参考

  1. Sauter D.W., Taoufik M., Boisson C. Polyolefins, a Success Story // Polymers. 2017. V. 9. № 6. ID 185. https://doi.org/10.3390/polym9060185
  2. Jubinville D., Esmizadeh E., Saikrishnan S., Tzoganakis C., Mekonnen T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustain. Mater. Technol. 2020. V. 25. ID e00188. https://doi.org/10.1016/j.susmat.2020.e00188
  3. Qiao J.L., Guo M.F., Wang L.S., Liu D.B., Zhang X.F., Yu L.Q., Song W.B., Liu Y.Q. Recent advances in polyolefin technology // Polym. Chem. 2011. V. 2. P. 1611–1623. https://doi.org/10.1039/C5RA09052K
  4. Nifant’ev I.E., Salakhov I.I., Ivchenko P.V. Transition metal–(μ-Cl)–aluminum bonding in α-olefin and diene chemistry // Molecules. 2022. V. 27. № 21. ID 7164. https://doi.org/10.3390/molecules27217164
  5. Nifant’ev I.E., Komarov P.D., Sadrtdinova G.I., Safronov V., Kolosov N.A., Ivchenko P.V. Mechanistic insights of ethylene polymerization on phillips chromium catalysts // Polymers. 2024. V. 16. № 5. ID 681. https://doi.org/10.3390/polym16050681
  6. Chum P.S., Swogger K.W. Olefin polymer technologies—History and recent progress at the Dow Chemical company // Prog. Polym. Sci. 2008. V. 33. Is. 8. P. 797–819. https://doi.org/10.1016/j.progpolymsci.2008.05.003
  7. Baier M.C., Zuideveld M.A., Mecking S. Post-Metallocenes in the industrial production of polyolefins // Angew. Chem. Int. Ed. 2014. V. 53. P. 9722–9744. https://doi.org/10.1002/anie.201400799
  8. Shamiri A., Chakrabarti M.H., Jahan S., Hussain M.A., Kaminsky W., Aravind P.V., Yehye W.A. The Influence of ziegler-natta and metallocene catalysts on polyolefin structure, properties, and processing ability // Materials. 2014. V. 7. P. 5069–5108. https://doi.org/10.3390/ma7075069
  9. Bochmann M. The Chemistry of catalyst activation: the case of group 4 polymerization catalysts // Organometallics. 2010. V. 29. № 21. P. 4711–4740. https://doi.org/10.1021/om1004447
  10. Zaccaria F., Zuccaccia C., Cipullo R., Budzelaar P.H.M., Vittoria A., Macchioni A., Busico V., Ehm C. Methylaluminoxane’s molecular cousin: a well-defined and «complete» al-activator for molecular olefin polymerization catalysts // ACS Catal. 2021. V. 11. № 8. P. 4464–4475. https://doi.org/10.1021/acscatal.0c05696
  11. Scollard J.D., McConville D.H., Vittal J.J. Sterically demanding diamide ligands: synthesis and structure of d0 zirconium alkyl derivatives // Organometallics. 1995. V. 14. P. 5478–5480. https://doi.org/10.1021/om00012a009
  12. Baumann R., Schrock R.R. NMR-detection of living intermediates prepared from activated [NON]ZrMe2 ([NON]2− = [(t-Bu-d6-N-o-C6H4)2O]2−) and olefins // J. Organomet. Chem. 1998. V. 557. P. 69–75. https://doi.org/10.1016/S0022-328X(97)00734-1
  13. Schrock R.R., Schattenmann F., Aizenberg M., Davis W.M. Synthesis of group 4 complexes that contain the tridentate diamido ligands [(ArNCH2CH2)2O]2– (Ar = C6H3–Me2-2,6 or C6H3Pri2-2,6) // Chem. Commun. 1998. V. 2. P. 199–200. https://doi.org/10.1039/A706452G
  14. Graf D.D., Schrock R.R., Davis W.M., Stumpf R. Synthesis of zirconium complexes containing the tridentate diamido ligands [(t-Bu-d6-N-o-C6H4)2S]2− and [(i-PrN-o-C6H4)2S]2− // Organometallics. 1999. V. 18. P. 843–852. https://doi.org/10.1021/om980934k
  15. Mehrkhodavandi P., Bonitatebus P.J., Schrock R.R. A comparison of cationic zirconium methyl and isobutyl initiators that contain an arylated diamido-pyridine ligand for polymerization of 1-hexene. Elucidation of a dramatic «initiator effect» // J. Am. Chem. Soc. 2000. V. 122. P. 7841–7842. https://doi.org/10.1021/ja000772v
  16. Liang L.C., Schrock R.R., Davis W.M., McConville D.H. Synthesis of group 4 complexes that contain the diamidoamine ligands, [(2,4,6-Me3C6H2NCH2CH2)2NR]2– ([Mes2N2NR]2–; R = H or CH3), and polymerization of 1-hexene by activated [Mes2N2NR]ZrMe2 Complexes // J. Am. Chem. Soc. 1999. V. 121. P. 5797–5798. https://doi.org/10.1021/ja983636n
  17. Schrock R.R., Casado A.L., Goodman J.T., Liang L.C., Bonitatebus P.J., Davis W.M. Preparation and Activation of Complexes of the Type [((mesityl) NCH2CH2)2NX]ZrMe2 (X = H, Me) with [Ph3C][B(C6F5)4] or [PhNMe2H][B(C6F5)4] // Organometallics. 2000. V. 19. P. 5325–5341. https://doi.org/10.1021/om0004996
  18. Schrock R.R., Bonitatebus P.J., Schrodi Y. CH Bond activation in cations of the type {[(2,4,6-Me3C6H2NCH2CH2)2NMe]ZrR}+ and a simple solution that yields a catalyst for the living polymerization of 1-hexene // Organometallics. 2000. V. 20. P. 1056–1058. https://doi.org/10.1021/om000972f
  19. Oskam J.H., Lynn T.R., Morrison V.P. Polymerization catalyst compositions // Patent USA № US6656868B2 (A1). 2003.
  20. Yang Q., McDaniel M.P., Martin J.L., Ding E., Rohlfing D.C., Crain T.R. Novel Catalyst Systems and Methods of Making and Using Same // Patent USA № US2012059134A1 (B2). 2012.
  21. Faler C.A., Whalley M.T. Non-Aromatic Hydrocarbon Soluble Olefin Polymerization Catalysts and Use Thereof // Patent USA № US2023406967A1. 2023.
  22. Kuhlman R.L., Neilson B.M., Szul J.F., Munro I.M. Method of olefin polymerization using alkane-soluble non-metallocene precatalyst // Patent USA № US2021403615A1. 2021.
  23. Zalesskiy S.S., Ananikov V.P. Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis // Organometallics. 2012. V. 31. P. 2302–2309. https://doi.org/10.1021/om201217
  24. Mashima K., Tsurugi H. Tetrabenzylzirconium // Encyclopedia of Reagents for Organic Synthesis. 2013. https://doi.org/10.1002/047084289X.rn01555
  25. CrysAlisPro. Version 1.171.42 // Rigaku Oxford Diffraction. 2022.
  26. Sheldrick G.M. SHELXT-Integrated space-group and crystal-structure determination // Acta Cryst. A. 2015. V. 71(1). P. 3–8. https://doi.org/10.1107/S2053273314026370
  27. Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Cryst. C. 2015. V. 71(1). P. 3–8. https://doi.org/10.1107/S2053229614024218
  28. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. // J. Appl. Cryst. 2009. V. 42(2). P. 339–341. https://doi.org/10.1107/S0021889808042726
  29. Liu T.M., Harrison I.R. A DSC method of measuring short-chain branching distribution in linear low density polyethylene // Thermochim. Acta. 1994. V. 233. № 1. P. 167–171. https://doi.org/10.1016/S0040-6031(99)80015-X
  30. Quijada, R., Scipioni, R.B., Mauler, R.S. Synthesis and characterization of ethylene-1-hexene copolymers using homogeneous Ziegler-Natta catalysts // Polym. Bull. 1995. V. 35. P. 299–306. https://doi.org/10.1007/BF00963127
  31. Karol F.J., Kao S.-C., Cann K.J. Comonomer effects with high-activity titanium- and vanadium-based catalysts for ethylene polymerization // J. Polym. Sci. A Polym. Chem. 1993. V. 31. P. 2541–2553. https://doi.org/10.1002/pola.1993.080311015
  32. Jiang B., Liu X., Weng Y., Fu Z., He A., Fan Z. Mechanistic study on comonomer effect in ethylene/1-hexene copolymerization with TiCl4/MgCl2 model Ziegler-Natta catalysts // J. Catal. 2019. V. 369. P. 324–334. https://doi.org/10.1016/j.jcat.2018.11.034
  33. Chien J.C.W., Nozaki T. Ethylene–hexene copolymerization by heterogeneous and homogeneous Ziegler–Natta catalysts and the «comonomer» effect // J. Polym. Sci. A Polym. Chem. 1993. V. 31. P. 227–237. https://doi.org/10.1002/pola.1993.080310127
  34. Quijada R., Galland G.B., Mauler R.S. The influence of the comonomer in the copolymerization of ethylene with α-olefins using C2H4[ind]2ZrCl2/methylaluminoxane as catalyst system // Macromol. Chem. Phys. 1996. V. 197. P. 3091–3098. https://doi.org/10.1002/macp.1996.021971003
  35. Irwin L.J., Reibenspies J.H., Miller S.A. A Sterically expanded “Constrained Geometry Catalyst” for highly active olefin polymerization and copolymerization: an unyielding comonomer effect // J. Am. Chem. Soc. 2004. V. 126, № 51. P. 16716–16717. https://doi.org/10.1021/ja044678g
  36. Soga K., Yanagihara H., Lee D.-h. Effect of monomer diffusion in the polymerization of olefins over Ziegler–Natta catalysts // Makromol. Chem. 1989. V. 190. P. 995–1006. https://doi.org/10.1002/macp.1989.021900508
  37. Seppälä J.V., Koivumäki J., Liu X. Co- and terpolymerization of ethylene with 1-butene and 1-decene by using Cp2ZrCl2-methylaluminoxane catalyst // J. Polym. Sci. A Polym. Chem. V. 31. P. 3447–3452. https://doi.org/10.1002/pola.1993.080311334
  38. Cruz V.L., Muñoz-Escalona A., Martinez-Salazar J. A theoretical study of the comonomer effect in the ethylene polymerization with zirconocene catalytic systems // J. Polym. Sci. A Polym. Chem. 1998. V. 36. P. 1157–1167. https://doi.org/ 10.1002/(SICI)1099-0518(199805) 36:7<1157::AID-POLA13>3.0.CO;2-6
  39. Wu Q., García-Peñas A., Barranco-García R., Cerrada M.L., Benavente R., Pérez E., Gómez-Elvira J.M. A New insight into the comonomer effect through NMR analysis in metallocene catalysed propene-co-1-nonene copolymers // Polymers. 2019. № 11. ID 1266. https://doi.org/10.3390/polym11081266
  40. Ivchenko P.V., Nifant’ev I.E., Ustynyuk L.Y., Ezerskii V.A. Regioselectivity of acid-catalyzed cyclization of 1-(3,4-dialkylaryl)-3-chloropropan-1-ones to indanones. Comparison of experimental data and results of computer simulation // Russ. Chem. Bull. 2009. V. 58. P. 929–935. https://doi.org/10.1007/s11172-009-0117-0

补充文件

附件文件
动作
1. JATS XML
2. Supplementary
下载 (1MB)
3. Fig. 1. Complexes studied in this work.

下载 (140KB)
4. Fig. 2. Synthesis of aromatic hydrocarbons.

下载 (265KB)
5. Fig. 3. Synthesis of ligands and complexes.

下载 (218KB)
6. Fig. 4. Molecular structures of Zr1–Zr5 complexes.

下载 (279KB)
7. Fig. 5. Differential scanning calorimetry (DSC) curves (second melting) of ethylene-1-hexene copolymer samples.

下载 (713KB)

注意

Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0028242125010021


版权所有 © Russian Academy of Sciences, 2025