Influence of Moisture Content of Sod-Podzolic Soil on the Content of Mobile Forms of Iron, Manganese, Nickel, Copper, Cobalt and Zinc

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Excessive moistening of soils can lead to changes in a number of soil properties, which in turn affects the content of mobile forms of elements. However, the gradations were developed for air-dry soil samples of automorphic landscapes, and therefore may not fully reflect the real picture for soils under overwatering conditions. The aim of the work was to assess changes in the content of mobile forms of trace elements in soil samples of field experiments with different levels of mineral fertilizer application on sod-podzolic sandy (Stagnic Podzol (Pantoarenic, Buthyloamic, Abruptic, Aric)) soil under different moisture conditions. The content of mobile forms of Fe, Mn, Ni, Cu, Co and Zn in the samples of sod-podzolic soil (arable layer 0–20 cm and sub-plough layer 20–40 cm), selected on the plots of field experiment– control (without mineral fertilizers), average rates of mineral fertilizers, high rates ofmineral fertilizers were estimated. Extraction of mobile forms of elements was carried out from air-dry soil samples, samples with field moisture and samples incubated in laboratory conditions at different moisture content and for different time. Soil samples were incubated at 60% and 100% of ultimate field water capacity for 3 and 6 weeks. It is shown that differences in the moisture content of samples can significantly change the content of mobile forms of Mn and Fe, which in turn affects the mobility of other elements – Cu, Co, Ni. For most of the studied elements, except for Zn, higher content of mobile forms of TM in moistened samples compared to air-dry samples is shown. An increase in the content of mobile forms of Zn in air-dry samples of the arable layer of soil under the influence of high rates of fertilizer application compared to the control was revealed. The increase in the content of mobile forms of Cu and Co under moistening conditions in the incubation experiment leads to changes in the gradations of soil supply with these trace elements from low to high, which may determine the need to adjust the existing gradations of soil supply taking into account their moisture content.

About the authors

A. D. Kotelnikova

Dokuchaev Soil Science Institute

Author for correspondence.
Email: kotelnikova_ad@esoil.ru
ORCID iD: 0000-0002-0515-6114
Russian Federation, Moscow, 119017

T. I. Borisochkina

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

K. A. Kolchanova

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

M. A. Shishkin

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

N. V. Matveeva

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

N. A. Kolobova

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

Y. I. Mitrofanov

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

N. K. Pervushina

Dokuchaev Soil Science Institute

Email: kotelnikova_ad@esoil.ru
Russian Federation, Moscow, 119017

References

  1. Абросимова Г.В. Формирование микроэлементного состава и свойств почв в условиях города под модельными фитоценозами (на примере лизиметров почвенного стационара МГУ). Дис. … канд. с-х. наук. М., 2016. 131 с.
  2. Алексеев Ю.В. Тяжелые металлы в почвах и растениях. Л.: Агропромиздат, Ленинградское отд., 1987. 142 с.
  3. Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во Моск. ун-та, 1970. 487 с.
  4. Важенин И.Г. О нормировании загрязнённости почвы выбросами промышленных предприятий // Химия в сельском хозяйстве. 1985. Т. 23. № 6. С. 42–45.
  5. Веригина К.В. Определение подвижного двух- и трехвалентного железа // Агрохимические методы исследования почв. М., 1965. С. 321–322.
  6. Водяницкий Ю.Н. Тяжелые металлы и металлоиды в почвах. М.: Почв. Ин-т им. В.В. Докучаева, 2008. 86 с.
  7. Водяницкий Ю.Н. Учет геохимических особенностей территории и погодных условий при нормировании тяжелых металлов в почвах // Агрохимия. 2014. № 2. С. 66–72.
  8. Водяницкий Ю.Н., Смагин А.В., Яковлев А.С. Факторы изменчивости содержания подвижных форм тяжелых металлов в почве // Экологический вестник Северного Кавказа. 2016. Т. 12. № 1. С. 27–38
  9. ГОСТ 26207-91. Почвы. Определение подвижных соединений фосфора и калия по методу Кирсанова в модификации ЦИНАО.
  10. ГОСТ 26213-91. Почвы. Методы определения органического вещества.
  11. Зайдельман Ф.Р. Естественное и антропогенное переувлажнение почв. СПб.: Гидрометеоиздат, 1992. 288 с.
  12. Карпова Е.А. Роль удобрений в циклах микроэлементов в агроэкосистемах // Российский химический журнал. 2005. Т. 49. № 3. С. 20–25.
  13. Канев В.В., Мокиев В.В. Агродерново-подзолистые почвы Северо-Востока Русской равнины. СПб.: Наука, 2004. 228 с.
  14. Клевлина Т.П. Микроэлементы в черноземах выщелоченных лесостепи Кузнецкой котловины и их влияние на продуктивность и качество яровой пшеницы. Автореф. дис. … канд. с.-х. наук. Кемерово, 2010. 19 с.
  15. Ковалев Н.Г., Митрофанов Ю.И., Иванов Д.А. Научное обеспечение формирования адаптивно-ландшафтных систем земледелия на осушаемых землях Нечерноземной зоны // Агрофизика. 2013. № 2. С. 9.
  16. Лебедев В.Е., Амакова Т.В. Роль влажности почвы в развитии сельскохозяйственных культур // Научные исследования студентов в решении актуальных проблем АПК. 2021. С. 59–65.
  17. Методические указания по проведению комплексного мониторинга плодородия почв земель сельскохозяйственного назначения. М.: Росинформагротех. 2003. 240 с.
  18. Минкина Т.М., Бурачевская М.В., Мотузова Г.В., Бауэр Т.В., Манджиева С.С., Козлова С.Н. Формы соединений тяжелых металлов в почвах // Биогеохимия химических элементов и соединений в природных средах. 2014. С. 57–67.
  19. Николаев М.В. Климатический мониторинг для оценок уязвимости сельскохозяйственных территорий к эффектам переувлажнения в Нечерноземной зоне Европейской России // Известия Русского географического общества. 2017. Т. 149. № 5. С. 4–16.
  20. Овчаренко М.М., Шильников И.А., Вендило Г.Г., Черных Н.А., Аканова Н.Л., Графская Г.А., Сопильняк Т.Н., Аристархов А.Н., Кузнецов А.В., Никифорова М.В. Тяжелые металлы в системе почва-растение-удобрение. М., 1997. 290 с.
  21. Петрова Л.И., Митрофанов Ю.И., Гуляев М.В., Первушина Н.К. Влияние удобрений на агрохимические показатели плодородия почвы и продуктивность севооборота // Плодородие. 2021. № 5. С. 8–11. https://doi.org/10.25680/S19948603.2021.122.02
  22. Плеханова И.О. Трансформация соединений Fe, Mn, Co и Ni в дерново-подзолистых почвах при различных уровнях влажности // Известия Российской академии наук. Сер. биологическая. 2007. № 1. С. 82–90.
  23. Плеханова И.О. Трансформация соединений тяжелых металлов в почвах при увлажнении. Автореф. дис. … докт. биол. наук. М., 2008. 52 с.
  24. Савельева В.А. Трансформация соединений кобальта в почвах при различных условиях увлажнения и внесения органического вещества. Автореф. дис. … канд. биол. наук. М., 1998. 27 с.
  25. Biryukova O.A., Bozhkov D.V., Minkina T.M., Medvedeva A.M., Elnikov I.I. Models of winter wheat yield based on calcareous chernozem fertility parameters // Am. J. Agric. Biol. Sci. 2016. V. 10. № 4. P. 186–196. https://doi.org/10.3844/ajabssp. 2015.186.196
  26. Borisochkina T.I., Kotelnikova A.D., Rogova O.B. The mass transfer of chemical elements and of their compounds in agrocenoses // Dokuchaev Soil Bulletin. 2022. № 110. P. 114–147. (In Russ.) https://doi.org/10.19047/0136-1694-2022-110–114-147
  27. Bruand A. Toward conditions favourable to mobility of trace elements in soils // Comptes Rendus Géoscience. 2005. V. 337. № 6. P. 549–550. https://doi.org/10.1016/j.crte.2005.02.004
  28. Gao X., Alvo M., Chen J., Li G. Nonparametric multiple comparison procedures for unbalanced one-way factorial designs // J. Stat. Plan. Inference. 2008. V. 138. P. 2574–2591. https://doi.org/10.1016/j.jspi.2007.10.015
  29. Kabata-Pendias A. Soil–plant transfer of trace elements—an environmental issue // Geoderma. 2004. V. 122. № 2. P. 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004
  30. Karpova E.A. The effect of long-term mineral fertilization on the status of iron and heavy metals in soddy-podzolic soils // Eurasian Soil Sci. 2006. V. 39. P. 953–960. https://doi.org/10.1134/S1064229306090043
  31. Kotelnikova A., Matveeva N., Borisochkina T., Rogova O., Volkov D.S., Savichev A. Organomineral fractions as a way to assess the chemical transformation of elements in soils of different cultivation // Soil Till. Res. 2024. V. 242. P. 106141. https://doi.org/10.1016/j.still.2024.106141
  32. Kotelnikova A.D., Borisochkina T.I., Kolchanova K.A., Shishkin M.A., Egorov F.S., Okorkov V.V., Rogova O.B. Changes in the elemental composition of agrocenosis components on gray forest soil under long-term application of mineral and organic fertilizers // Dokuchaev Soil Bulletin. 2024. № 119. P. 172–210. (In Russ.) https://doi.org/10.19047/0136-1694-2024-119-172-210
  33. Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis // J. Am. Stat. Assoc. 1952. V. 47. № 260. P. 583–621.
  34. Kumpiene J., Giagnoni L., Marschner B., Denys S., Mench M., Adriaensen K., Vangronsveld J., Puschenreiter M., Renella G. Assessment of methods for determining bioavailability of trace elements in soils: a review // Pedosphere. 2017. V. 27. № 3. P. 389–406. https://doi.org/10.1016/S1002-0160(17)60337-0
  35. Li Y., Padoan E., Ajmone-Marsan F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review // Ecotoxicol. Environ. Saf. 2021. V. 209. P. 111806. https://doi.org/10.1016/j.ecoenv.2020.111806
  36. Lv Y., Kuang J., Ding Z., Li R., Shi Z. Soil moisture dynamics regulates the release rates and lability of copper in contaminated paddy soils // Sci. Total. Environ. 2024. V. 908. P. 168525. https://doi.org/10.1016/j.scitotenv.2023.168525
  37. Misra A., Tyler G. Effects of soil moisture on soil solution chemistry, biomass production, and shoot nutrients in two native grasses on a calcareous soil // Comm. Soil Sci. Plant. Anal. 2000. V. 31. № 17–18. P. 2727–2738. https://doi.org/10.1080/00103620009370622
  38. Moraghan J.T., Mascagni Jr H.J. Environmental and soil factors affecting micronutrient deficiencies and toxicities // Micronutr Agric. 1991. V. 4. P. 371–425. https://doi.org/10.2136/sssabookser4.2ed.c11
  39. Mortland M.M. Clay-organic complexes and interactions // Adv. Agron. 1970. V. 22. P. 75–117. https://doi.org/10.1016/S0065-2113(08)60266-7
  40. Plekhanova I.O., Savel’eva V.A. The transformation of cobalt compounds in soils upon moistening // Eurasian Soil Sci. 1999. V. 32. № 5. P. 514–520.
  41. Plekhanova I.O., Bambusheva V.A. Extraction methods for studying the fractional composition of heavy metals in soils and their comparative assessment // Eurasian Soil Sci. 2010. V. 43. P. 1004-1010. https://doi.org/10.1134/S1064229310090073
  42. Plekhanova I.O. Effect of wetting conditions on the fractional composition of heavy metal compounds in agrosoddy-podzolic soils contaminated with sewage sludge // Eurasian Soil Sci. 2012. V. 45. P. 657–664. https://doi.org/10.1134/S1064229312070058
  43. Singh V., Agrawal H.M., Joshi G.C., Sudershan M., Sinha A.K. Elemental profile of agricultural soil by the EDXRF technique and use of the Principal Component Analysis (PCA) method to interpret the complex data // Appl. Radiat. Isot. 2011. V. 69. № 7. P. 969–974. https://doi.org/10.1016/j.apradiso.2011.01.025
  44. Siromlya T.I. On available forms of chemical compounds in soils // Contemporary Problems of Ecology. 2009. V. 2. P. 678-685. https://doi.org/10.1134/S1995425509060307
  45. Travnikova L.S., Kakhnovich Z.N., Bol’shakov V.A., Kogut B.M., Sorokin S.E., Ismagilova N.K. Significance of organomineral fractions for evaluation of heavy metal contamination of soddy-podzolic soil // Eurasian Soil Sci. 2000. V. 33. № 1. P. 81–89.
  46. Vodyanitskii Y.N., Plekhanova I.O. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review) // Eurasian Soil Sci. 2014. V. 47. P. 153–161. https://doi.org/10.1134/S1064229314030090
  47. Wang Z., Shan X., Zhang S. Comparison of speciation and bioavailability of rare earth elements between wet rhizosphere soil and air-dried bulk soil // Anal Chim Acta. 2001. V. 441. № 1. P. 147–156. https://doi.org/10.1016/S0003-2670(01)01093-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The content of mobile forms (extract 0.1 n. H2SO4) Fe (a), Mn (b), Cu (c) in air-dry soil samples of field experiment, in samples with field humidity and in samples incubated in laboratory conditions (60 and 100% PPV) for 3 and 6 weeks. The same number * marked the experimental variants that statistically significantly differ from each other according to the Gao test (p < 0.05), differences were noted only within one group of field experience samples.

Download (633KB)
3. Fig. 2. The content of mobile forms (extract 0.1 n. H2SO4) Ni (a), Co (b), Zn (c) in air-dry soil samples of field experiment, in samples with field humidity and in samples incubated in laboratory conditions (60 and 100% PPV) for 3 and 6 weeks. The same number * marked the experimental variants that statistically significantly differ from each other according to the Gao test (p < 0.05), differences were noted only within one group of field experience samples.

Download (657KB)
4. Fig. 3. Ordination of field experimental soil samples (0-20 cm layer) at different humidity in the main component space (GC), based on the content of mobile forms of elements extracted by ammonium acetate buffer from air-dry samples (a), samples with field humidity (c), samples with 100% humidity PPV incubated for 3 weeks (b), samples with a humidity of 60% PPV incubated for 3 weeks (d).

Download (310KB)

Copyright (c) 2025 Russian Academy of Sciences