Anti-influenza activity of compounds derived from medicinal plants (part II)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The second part of the review presents an analysis of publications on the anti-influenza activity of substances contained in 36 medicinal plants. Each of the described compounds has various mechanisms of action on the influenza virus.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Fedorova

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Хат алмасуға жауапты Автор.
Email: vikusik_bio_24@mail.ru
Ресей, St. Petersburg

K. Sivak

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: vikusik_bio_24@mail.ru
Ресей, St. Petersburg

K. Stosman

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: vikusik_bio_24@mail.ru
Ресей, St. Petersburg

Әдебиет тізімі

  1. Yu C., Yan Y., Wu X., Zhang B., Wang W., Wu Q. 2010. Anti-influenza virus effects of the aqueous extract from Mosla scabra. — J. Ethnopharmacol. 127(2): 280–285. https://doi.org/10.1016/j.jep.2009.11.008
  2. Cai W., Zhang S. L. 2022. Anti-inflammatory mechanisms of total flavonoids from Mosla scabra against influenza A virus-induced pneumonia by integrating network pharmacology and experimental verification. — Evid. Based Complement. Alternat. Med. Article ID2154485, 10 p. https://doi.org/10.1155/2022/2154485
  3. Yu C. H., Yu W. Y., Fang J., Zhang H. H., Ma Y., Yu B., Wu F., Wu X. N. 2016. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. — J. Ethnopharmacol. 179: 146–155. https://doi.org/10.1016/j.jep.2015.12.034
  4. Cai W., Wu L. R., Zhang S. L. 2022. Lignans from Mosla scabra ameliorated influenza A virus-induced pneumonia via inhibiting macrophage activation. — Evid. Based Complement. Alternat. Med. Article ID1688826, 11 p. https://doi.org/10.1155/2022/1688826
  5. Wu Q. F., Wang W., Dai X. Y., Wang Z. Y., Shen Z. H., Ying H. Z., Yu C. H. 2012. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. — J. Ethnopharmacol. 139(2): 668–671. https://doi.org/10.1016/j.jep.2011.11.056
  6. Zheng K., Wu S. Z., Lv Y. W., Pang P., Deng L., Xu H. C., Shi Y. C., Chen X. Y. 2021. Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. — J. Ethnopharmacol. 268: 113555. https://doi.org/10.1016/j.jep.2020.113555
  7. Ha T. K.Q., Lee B. W., Nguyen N. H., Cho H. M., Venkatesan T., Doan T. P., Kim E., Oh W. K. 2020. Antiviral activities of compounds isolated from Pinus densiflora (pine tree) against the influenza A virus. — Biomolecules. 10(5): 711. https://doi.org/10.3390/biom10050711
  8. Lee B. W., Ha T. K.Q., Cho H. M., An J. P., Kim S. K., Kim C. S., Kim E., Oh W. K. 2020. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2. — J. Ethnopharmacol. 259: 112945. https://doi.org/10.1016/j.jep.2020.112945
  9. Park J. Y., Jeong H. J., Kim Y. M., Park S. J., Rho M. C., Park K. H., Ryu Y. B., Lee W. S. 2011. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. — Bioorg. Med. Chem. Lett. 21(18): 5602–5604. https://doi.org/10.1016/j.bmcl.2011.06.130
  10. Sánchez M., González-Burgos E., Iglesias I., Gómez-Serranillos M.P. 2020. Pharmacological update properties of Aloe vera and its major active constituents. — Molecules. 25(6): 1324. https://doi.org/10.3390/molecules25061324
  11. Huang C. T., Hung C. Y., Hseih Y. C., Chang C. S., Velu A. B., He Y. C., Huang Y. L., Chen T. A., Chen T. C., Lin C. Y., Lin Y. C., Shih S. R., Dutta A. 2019. Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. — Phytomedicine. 64: 152904. https://doi.org/10.1016/j.phymed.2019.152904
  12. Choi J. G., Lee H., Kim Y. S., Hwang Y. H., Oh Y. C., Lee B., Moon K. M., Cho W. K., Ma J. Y. 2019. Aloe vera and its components inhibit influenza A virus-induced autophagy and replication. — Am. J. Chin. Med. 47(6): 1307–132. https://doi.org/10.1142/S0192415X19500678
  13. Wang H. X., Zeng M. S., Ye Y., Liu J. Y., Xu P. P. 2021. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. — Phytother. Res. 35(1): 324–336. https://doi.org/10.1002/ptr.6803
  14. Zeng M. S., Yu W. D., Wang H. X., Xu P. P., Liu J. Y. 2021. Puerarin reduces impairment of intestinal and adipose immune responses to influenza virus infection in mice. — Arch. Virol. 166(9): 2387–2397. https://doi.org/10.1007/s00705-021-05112-z
  15. Liao Q., Qian Z., Liu R., An L., Chen X. 2013. Germacrone inhibits early stages of influenza virus infection. — Antiviral. Res. 100(3): 578–588. https://doi.org/10.1016/j.antiviral.2013.09.021
  16. Li Y., Lai Y., Wang Y., Liu N., Zhang F., Xu P. 2016. 1,8-cineol protect against influenza-virus-induced pneumonia in mice. — Inflammation. 39(4): 1582–1593. https://doi.org/10.1007/s10753-016-0394-3
  17. Madia V. N., Toscanelli W., De Vita D., De Angelis M., Messore A., Ialongo D., Scipione L., Tudino V., D’Auria F.D., Di Santo R., Garzoli S., Stringaro A., Colone M., Marchetti M., Superti F., Nencioni L., Costi R. 2022. Ultrastructural damages to H1N1 influenza virus caused by vapor essential oils. — Molecules. 27(12): 3718. https://doi.org/10.3390/molecules27123718
  18. Garozzo A., Timpanaro R., Stivala A., Bisignano G., Castro A. 2011. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: study on the mechanism of action. — Antiviral Res. 89(1): 83–88. https://doi.org/10.1016/j.antiviral.2010.11.010
  19. Li X., Duan S., Chu C., Xu J., Zeng G., Lam A. K., Zhou J., Yin Y., Fang D., Reynolds M. J., Gu H., Jiang L. 2013. Melaleuca alternifolia concentrate inhibits in vitro entry of influenza virus into host cells. — Molecules. 18(8): 9550–9566. https://doi.org/10.3390/molecules18089550
  20. Liu F., Cao W., Deng C., Wu Z., Zeng G., Zhou Y. 2016. Polyphenolic glycosides isolated from Pogostemon cablin (Blanco) Benth. as novel influenza neuraminidase inhibitors. — Chem. Cent. J. 10: 51. https://doi.org/10.1186/s13065-016-0192-x
  21. Wu H., Li B., Wang X., Jin M., Wang G. 2011. Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus. — Molecules. 16(8): 6489–6501. https://doi.org/10.3390/molecules16086489
  22. Li Y. C., Peng S. Z., Chen H. M., Zhang F. X., Xu P. P., Xie J. H., He J. J., Chen J. N., Lai X. P., Su Z. R. 2012. Oral administration of patchouli alcohol isolated from Pogostemonis Herba augments protection against influenza viral infection in mice. — Int. Immunopharmacol. 12(1): 294–301. https://doi.org/10.1016/j.intimp.2011.12.007
  23. Yu Y., Zhang Y., Wang S., Liu W., Hao C., Wang W. 2019. Inhibition effects of patchouli alcohol against influenza a virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways. — Virol. J. 16(1): 163. https://doi.org/10.1186/s12985-019-1266-x
  24. Fan Y., Zhang Q., Zhang W., Lai Y., Long H., Huang H., Zhan S., Liu X., Lai J., Zhang Z., Pan P., Su Z., Li G. 2023. Inhibitory effects of Patchouli alcohol on the early lifecycle stages of influenza A virus. — Front. Microbiol. 13: 938868. https://doi.org/10.3389/fmicb.2022.938868
  25. Li B., Ni Y., Zhu L. J., Wu F. B., Yan F., Zhang X., Yao X. S. 2015. Flavonoids from Matteuccia struthiopteris and their anti-influenza virus (H1N1) activity. — J. Nat. Prod. 78(5): 987–995. https://doi.org/10.1021/np500879t
  26. Chavan R. D., Shinde P., Girkar K., Madage R., Chowdhary A. 2016. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. — Pharmacogn. Res. 8(2): 105–111. https://doi.org/10.4103/0974-8490.172562
  27. Rouf R., Uddin S. J., Sarker D. K., Islam M. T., Ali E. S., Shilpi J. A., Nahar L., Tiralongo E., Sarker S. D. 2020. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. — Trends Food Sci. Technol. 104: 219–234. https://doi.org/10.1016/j.tifs.2020.08.006
  28. Ming L., Li Z., Li X., Tang L., He G. 2021. Antiviral activity of diallyl trisulfide against H9N2 avian influenza virus infection in vitro and in vivo. — Virol. J. 18(1): 171. https://doi.org/10.1186/s12985-021-01641-w
  29. Ardebili A., Pouriayevali M. H., Aleshikh S., Zahani M., Ajorloo M., Izanloo A., Siyadatpanah A., Razavi Nikoo H., Wilairatana P., Coutinho H. D.M. 2021. Antiviral therapeutic potential of curcumin: An update. — Molecules. 26(22): 6994. https://doi.org/10.3390/molecules26226994
  30. Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J., Steinmann E. 2019. Anti-infective properties of the golden spice curcumin. — Front. Microbiol. 10: 912. https://doi.org/10.3389/fmicb.2019.00912
  31. Chen T. Y., Chen D. Y., Wen H. W., Ou J. L., Chiou S. S., Chen J. M., Wong M. L., Hsu W. L. 2013. Inhibition of enveloped viruses infectivity by curcumin. — PLoS One. 8(5): e62482. https://doi.org/10.1371/journal.pone.0062482
  32. Lai Y., Yan Y., Liao S., Li Y., Ye Y., Liu N., Zhao F., Xu P. 2020. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. — Arch. Pharm. Res. 43(5): 489–502. https://doi.org/10.1007/s12272-020-01230-5
  33. Nimmerjahn F., Dudziak D., Dirmeier U., Hobom G., Riedel A., Schlee M., Staudt L. M., Rosenwald A., Behrends U., Bornkamm G. W., Mautner J. 2004. Active NF-kappaB signalling is a prerequisite for influenza virus infection. — J. Gen. Virol. 85(8): 2347–2356. https://doi.org/10.1099/vir.0.79958-0
  34. Yang Q., Wu B., Shi Y., Du X., Fan M., Sun Z., Cui X., Huang C. 2012. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis. — Arch. Pharm. Res. 35(1): 9–17. https://doi.org/10.1007/s12272-012-0101-3
  35. Zhang Y., Yao J., Qi X., Liu X., Lu X., Feng G. 2017. Geniposide demonstrates anti-inflammatory and antiviral activity against pandemic A/Jiangsu/1/2009 (H1N1) influenza virus infection in vitro and in vivo. — Antivir. Ther. 22(7): 599–611. https://doi.org/10.3851/IMP3152
  36. Guo S., Bao L., Li C., Sun J., Zhao R., Cui X. 2020. Antiviral activity of iridoid glycosides extracted from Fructus gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication. — Sci. Rep. 10(1): 1897. https://doi.org/10.1038/s41598-020-58443-3
  37. Zhou L., Bao L., Wang Y., Chen M., Zhang Y., Geng Z., Zhao R., Sun J., Bao Y., Shi Y., Yao R., Guo S., Cui X. 2021. An integrated analysis reveals geniposide extracted from Gardenia jasminoides J. Ellis regulates calcium signaling pathway essential for influenza A virus replication. — Front. Pharmacol. 12: 755796. https://doi.org/10.3389/fphar.2021.755796
  38. Hong E. H., Song J. H., Shim A., Lee B. R., Kwon B. E., Song H. H., Kim Y. J., Chang S. Y., Jeong H. G., Kim J. G., Seo S. U., Kim H., Kwon Y., Ko H. J. 2015. Coadministration of Hedera helix L. extract enabled mice to overcome insufficient protection against influenza A/PR/8 virus infection under suboptimal treatment with oseltamivir. — PLoS One. 10(6): e0131089. https://doi.org/10.1371/journal.pone.0131089
  39. Mehrbod P., Abdalla M. A., Fotouhi F., Heidarzadeh M., Aro A. O., Eloff J. N., McGaw L. J., Fasina F. O. 2018. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. — BMC Complement. Altern. Med. Ther. 18(1): 184. https://doi.org/10.1186/s12906-018-2246-1
  40. Ding Y., Cao Z., Cao L., Ding G., Wang Z., Xiao W. 2017. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. — Sci. Rep. 7: 45723. https://doi.org/10.1038/srep45723
  41. Grienke U., Schmidtke M., Kirchmair J., Pfarr K., Wutzler P., Dürrwald R., Wolber G., Liedl K. R., Stuppner H., Rollinger J. M. 2010. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. — J. Med. Chem. 53(2): 778–786. https://doi.org/10.1021/jm901440f
  42. Kwon H. J., Kim H. H., Yoon S. Y., Ryu Y. B., Chang J. S., Cho K. O., Rho M. C., Park S. J., Lee W. S. 2010. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. — Virol. J. 7: 307. https://doi.org/10.1186/1743-422X-7-307
  43. Hong E. H., Song J. H., Kim S. R., Cho J., Jeong B., Yang H., Jeong J. H., Ahn J. H., Jeong H., Kim S. E., Chang S. Y., Ko H. J. 2020. Morin hydrate inhibits influenza virus entry into host cells and has anti-inflammatory effect in influenza-infected mice. — Immune Netw. 20(4): e32. https://doi.org/10.4110/in.2020.20.e32
  44. Li Y., Leung K. T., Yao F., Ooi L. S., Ooi V. E. 2006. Antiviral flavans from the leaves of Pithecellobium clypearia. — J. Nat. Prod. 69(5): 833–835. https://doi.org/10.1021/np050498o
  45. Kang J., Liu C., Wang H., Li B., Li C., Chen R., Liu A. 2014. Studies on the bioactive flavonoids isolated from Pithecellobium clypearia Benth. — Molecules. 19(4): 4479–4490. https://doi.org/10.3390/molecules19044479
  46. Li C., Xu L. J., Lian W. W., Pang X. C., Jia H., Liu A. L., Du G. H. 2018. Anti-influenza effect and action mechanisms of the chemical constituent gallocatechin-7-gallate from Pithecellobium clypearia Benth. — Acta Pharmacol. Sin. 39(12): 1913–1922. https://doi.org/10.1038/s41401-018-0030-x
  47. Jeong H. J., Ryu Y. B., Park S. J., Kim J. H., Kwon H. J., Kim J. H., Park K. H., Rho M. C., Lee W. S. 2009. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. — Bioorg. Med. Chem. 17(19): 6816–6823. https://doi.org/10.1016/j.bmc.2009.08.036
  48. Langeder J., Grienke U., Döring K., Jafari M., Ehrhardt C., Schmidtke M., Rollinger J. M. 2021. High-performance countercurrent chromatography to access Rhodiola rosea influenza virus inhibiting constituents. — Planta Med. 87(10-11): 818–826. https://doi.org/10.1055/a-1228-8473
  49. Döring K., Langeder J., Duwe S., Tahir A., Grienke U., Rollinger J. M., Schmidtke M. 2022. Insights into the direct anti-influenza virus mode of action of Rhodiola rosea. — Phytomedicine. 96: 153895. https://doi.org/10.1016/j.phymed.2021.153895
  50. He Z., Lian W., Liu J., Zheng R., Xu H., Du G., Liu A. 2017. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. — Phytochem. Lett. 19: 160–167. https://doi.org/10.1016/j.phytol.2016.12.031
  51. Dai W. P., Li G., Li X., Hu Q. P., Liu J. X., Zhang F. X., Su Z. R., Lai X. P. 2014. The roots of Ilex asprella extract lessens acute respiratory distress syndrome in mice induced by influenza virus. — J. Ethnopharmacol. 155(3): 1575–1582. https://doi.org/10.1016/j.jep.2014.07.051
  52. Peng M. H., Dai W. P., Liu S. J., Yu L. W., Wu Y. N., Liu R., Chen X. L., Lai X. P., Li X., Zhao Z. X., Li G. 2016. Bioactive glycosides from the roots of Ilex asprella. — Pharm. Biol. 54(10): 2127–2134. https://doi.org/10.3109/13880209.2016.1146779
  53. Zhang W., Chen S. T., He Q. Y., Huang L. Q., Li X., Lai X. P., Zhan S. F., Huang H. T., Liu X. H., Wu J., Li G. 2019. Asprellcosides B of Ilex asprella Inhibits Influenza A Virus Infection by Blocking the Hemagglutinin-Mediated Membrane Fusion. — Front. Microbiol. 9: 3325. https://doi.org/10.3389/fmicb.2018.03325
  54. Dao T. T., Dang T. T., Nguyen P. H., Kim E., Thuong P. T., Oh W. K. 2012. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. — Bioorg. Med. Chem. Lett. 22(11): 3688–3692. https://doi.org/10.1016/j.bmcl.2012.04.028
  55. Zhao T., Li C., Wang S., Song X. 2022. Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. — Molecules. 27(12): 3909. https://doi.org/10.3390/molecules27123909
  56. Kuzuhara T., Iwai Y., Takahashi H., Hatakeyama D., Echigo N. 2009. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. — PLoS Curr. 1: RRN1052. PMID: 20025206. PMCID: PMC2762814
  57. Song J. M., Lee K. H., Seong B. L. 2005. Antiviral effect of catechins in green tea on influenza virus. — Antiviral Res. 68(2): 66–74. https://doi.org/10.1016/j.antiviral.2005.06.010
  58. Kim M., Kim S. Y., Lee H. W., Shin J. S., Kim P., Jung Y. S., Jeong H. S., Hyun J. K., Lee C. K. 2013. Inhibition of influenza virus internalization by (–)-epigallocatechin-3-gallate. — Antiviral Res. 100(2): 460–472. https://doi.org/10.1016/j.antiviral.2013.08.002
  59. Ling J. X., Wei F., Li N., Li J. L., Chen L. J., Liu Y. Y., Luo F., Xiong H. R., Hou W., Yang Z. Q. 2012. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. — Acta Pharmacol. Sin. 33(12): 1533–1541. https://doi.org/10.1038/aps.2012.80
  60. Zhu J., Ou L., Zhou Y., Yang Z., Bie M. 2020. (–)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. — J. Thorac. Dis. 12(3): 989–997. https://dx.doi.org/10.21037/jtd.2020.03.20
  61. Xu M. J., Liu B. J., Wang C. L., Wang G. H., Tian Y., Wang S. H., Li J., Li P. Y., Zhang R. H., Wei D., Tian S. F., Xu T. 2017. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. — Int. Immunopharmacol. 52: 24–33. https://doi.org/10.1016/j.intimp.2017.08.023
  62. Sriwilaijaroen N., Fukumoto S., Kumagai K., Hiramatsu H., Odagiri T., Tashiro M., Suzuki Y. 2012. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. — Antiviral Res. 94(2): 139–146. https://doi.org/10.1016/j.antiviral.2012.02.013
  63. Khalil H., Abd El-Maksoud A. I., Roshdey T., El-Masry S. 2019. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. — J. Med. Virol. 91(1): 45–55. https://doi.org/10.1002/jmv.25295
  64. Wirotesangthong M., Nagai T., Yamada H., Amnuoypol S., Mungmee C. 2009. Effects of Clinacanthus siamensis leaf extract on influenza virus infection. — Microbiol. Immunol. 53(2): 66–74. https://doi.org/10.1111/j.1348-0421.2008.00095.x
  65. Pleschka S., Stein M., Schoop R., Hudson J. B. 2009. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). — Virol. J. 6: 197. https://doi.org/10.1186/1743-422X-6-197
  66. Michaelis M., Doerr H. W., Cinatl J. Jr. 2011. Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. — Phytomedicine. 18(5): 384–386. https://doi.org/10.1016/j.phymed.2010.09.008
  67. Theisen L. L., Muller C. P. 2012. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. — Antiviral Res. 94(2): 147–156. https://doi.org/10.1016/j.antiviral.2012.03.006
  68. Heo Y., Cho Y., Ju K. S., Cho H., Park K. H., Choi H., Yoon J. K., Moon C., Kim Y. B. 2018. Antiviral activity of Poncirus trifoliata seed extract against oseltamivir-resistant influenza virus. — J. Microbiol. 56(8): 586–592. https://doi.org/10.1007/s12275-018-8222-0
  69. Nguyen P. H., Na M., Dao T. T., Ndinteh D. T., Mbafor J. T., Park J., Cheong H., Oh W. K. 2010. New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae. — Bioorg. Med. Chem. Lett. 20(22): 6430–64344. https://doi.org/10.1016/j.bmcl.2010.09.077
  70. Tan J., Qiao Z., Meng M., Zhang F., Kwan H. Y., Zhong K., Yang C., Wang Y., Zhang M., Liu Z., Su T. 2022. Centipeda minima: An update on its phytochemistry, pharmacology and safety. — J. Ethnopharmacol. 292: 115027. https://doi.org/10.1016/j.jep.2022.115027
  71. Zhang X., He J., Huang W., Huang H., Zhang Z., Wang J., Yang L., Wang G., Wang Y., Li Y. 2018. Antiviral activity of the sesquiterpene lactones from Centipeda minima against influenza A virus in vitro. — Nat. Prod. Commun. 13(2): 115–119. https://doi.org/10.1177/1934578X1801300201
  72. Zhang X., Xia Y., Yang L., He J., Li Y., Xia C. 2019. Brevilin A, a sesquiterpene lactone, inhibits the replication of influenza A virus in vitro and in vivo. — Viruses. 11(9): 835. https://doi.org/10.3390/v11090835
  73. Gansukh E., Kazibwe Z., Pandurangan M., Judy G., Kim D. H. 2016. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. — Phytomedicine. 23(9): 958–967. https://doi.org/10.1016/j.phymed.2016.06.001
  74. Kim D. H., Park G. S., Nile A. S., Kwon Y. D., Enkhtaivan G., Nile S. H. 2019. Utilization of Dianthus superbus L. and its bioactive compounds for antioxidant, anti-influenza and toxicological effects. — Food. Chem. Toxicol. 125: 313–321. https://doi.org/10.1016/j.fct.2019.01.013
  75. Nile S. H., Kim D. H., Nile A., Park G. S., Gansukh E., Kai G. 2020. Probing the effect of quercetin 3-glucoside from Dianthus superbus L. against influenza virus infection in vitro and in silico biochemical and toxicological screening. — Food. Chem. Toxicol. 135: 110985. https://doi.org/10.1016/j.fct.2019.110985
  76. Vimalanathan S., Hudson J. 2014. Anti-influenza virus activity of essential oils and vapors. — Am. J. Essent. Oil Nat. Prod. 2(1): 47–53. https://www.essencejournal.com/archives/2014/2/1/A/8

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025