Simultaneous Determination of Avilamycin and Nosigeptide Marker Residues in Chicken Meat by the HPLC-MS/MS Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multicomponent residue analysis of veterinary drugs by HPLC-MS/MS is relevant for food safety. A significant problem is the determination of veterinary drugs whose molecules are large in size. Electrospray ionization of such molecules is difficult, and it is difficult to achieve the required sensitivity by classical separation from the matrix with subsequent detection. Such drugs include avilamycin and nosiheptide. To solve this problem, it is possible to fragment the molecules into smaller and easily detectable residues by hydrolysis, which in turn raises the problem of optimizing the conditions of such preparation, as well as assessing the uniqueness of the selected marker. The possibility of simultaneous determination of avilamycin and nosiheptide in chicken meat by their alkaline hydrolysis to the markers dichloroisoverninic acid and 4-hydroxymethyl-3-methylindole-2-carboxylic acid, respectively, has been demonstrated. The conditions of extraction, hydrolysis and methods of further purification were studied. Under the selected conditions, analyte recovery was >85% and satisfactory reproducibility was achieved (sr ≤ 0.15). The detection limits were 5 µg/kg. The developed method is highly selective, rapid, easy to perform, inexpensive and has good analytical performance.

About the authors

D. P. Bulkatov

Federal Centre for Animal Healt (FGBI ARRIAH); Bauman Moscow State Technical University

Email: artem150196@mail.ru

STI Center “Digital materials science: new materials and substances”

Russian Federation, Vladimir; Moscow

A. O. Melekhin

Federal Centre for Animal Healt (FGBI ARRIAH)

Author for correspondence.
Email: artem150196@mail.ru
Russian Federation, Vladimir

M. Yu. Parfeno

Baltic Control

Email: artem150196@mail.ru
Kazakhstan, Astana

V. V. Tischenko

Federal Centre for Animal Healt (FGBI ARRIAH)

Email: artem150196@mail.ru
Russian Federation, Vladimir

A. L. Bairov

Federal Centre for Animal Healt (FGBI ARRIAH)

Email: artem150196@mail.ru
Russian Federation, Vladimir

References

  1. Li J., Zhou Y., Yang D., Zhang S., Sun Z., Wang Y. et al. Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi // Vet. Microbiol. 2021. V. 252. Article 108932. https://doi.org/10.1016/j.vetmic.2020.108932
  2. Miyakawa M., Casanova N., Kogut M. How did antibiotic growth promoters increase growth and feed efficiency in poultry? // Poult. Sci. 2024. V. 103. Article 103278. https://doi.org/10.1016/j.psj.2023.103278
  3. Polikanov Y., Aleksashin N., Beckert B. Wilson D. The mechanisms of action of ribosome-targeting peptide antibiotics, frontiers in molecular biosciences // Front. Mol. Biosci. 2018. V. 5. Article 48. https://doi.org/10.3389/fmolb.2018.00048
  4. Yang W., Hu C., Wang C., Chou C. Growth performance of broilers raised without HMIAs in Taiwan // J. Chin. Soc. Anim. Sci. 2021. V. 50. P. 13.
  5. Roth N., Käsbohrer A., Mayrhofer S., Zitz U., Hofacre C., Domig. K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview // Poult. Sci. 2019. V. 98. P. 1791. https://doi.org/10.3382/ps/pey539
  6. Zhao Q., Jiang Z., Li T., Cheng M., Sun H., Cui M. et al. Current status and trends in antimicrobial use in food animals in China, 2018–2020 // One Health Adv. 2023. V. 1. Article 29. https://doi.org/10.1186/s44280-023-00029-5
  7. Мелехин А.О., Толмачева В.В., Холявская Ю.Н., Седых Е.С., Дмитриенко С.Г., Апяри В.В., Баиров А.Л. Быстрый гидролиз и дериватизация метаболитов нитрофуранов с новым дериватизирующим агентом 5-нитро-2-фуральдегидом при их ВЭЖХ-МС/МС-определении в курином мясе // Журн. аналит. химии. 2022. Т. 77. № 10. С. 938. (Melekhin A.O., Tolmacheva V.V., Kholyavskaya Y.N., Sedykh E.S., Dmitrienko S.G., Apyari V.V., Bairov A.L. Rapid hydrolysis and derivatization of nitrofuran metabolites with a new derivatizing agent 5-nitro-2-furaldehyde in their determination in chicken meat by HPLC–MS/MS // J. Anal. Chem. 2022. V. 77. P. 1300. https://doi.org/10.1134/S1061934822100112)
  8. Zhou L., Chen G., Chen M., Lu X., Xi Y., Zhi Y. Development of a highly sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the detection of avilamycin in feed // Food Addit. Contam. Part A. 2022. V. 39. Article 3. https://doi.org/10.1080/19440049.2021.2017003
  9. Song J.G., Baral K.C., Kim G.L., Park J.W., Seo S.H., Kim D.H. et al. Quantitative analysis of therapeutic proteins in biological fluids: Recent advancement in analytical techniques // Drug Delivery. 2023. V. 30. № 1. P. 268. https://doi.org/10.1080/10717544.2023.2183816
  10. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC (Text with EEA relevance).
  11. Yamata T., Shimamura C., Asao M., Aita N. Chihara T. Validation study on a method of determination of nosiheptide in formula feeds by HPLC-FL // J. Food Hyg. Soc. Jpn. 2015. V. 56. Article 173-7. https://doi.org/10.3358/shokueishi.56.173
  12. Song X., Zhang X., Zhang Y., Li M. He X. Rapid determination of nosiheptide in feed based on dispersive SPE coupled with HPLC // J. Sep. Sci. 2018. V. 42. Article 3. https://doi.org/10.1002/jssc.201801036
  13. Jiang H., Zhai W., Xia X., Ding S., Xu F., Shen J. et al. LC Determination of nosiheptide in swine kidney and liver // Chromatographia. 2010. V. 71. P. 131. https://doi.org/10.1365/s10337-009-1418-z
  14. Song X., Xie J., Su Y., Martín-Esteban A., Qiu J., Li X., He L. Analysis of nosiheptide in food animal tissues via its unique degradation product by liquid chromatography–tandem mass spectrometry after alkaline hydrolysis // J. Agric. Food Chem. 2019. V. 67. Article 38. https://doi.org/10.1021/acs.jafc.9b03912
  15. Saito-Shida S., Hayashi T., Nemoto S. Akiyama H. Determination of total avilamycin residues as dichloroisoeverninic acid in porcine muscle, fat, and liver by LC-MS/MS // Food Chem. 2018. V. 249. P. 84. https://doi.org/10.1016/j.foodchem.2018.01.003
  16. Shen J., Zhao F., Zhu P., Wu F., Chen X., Kang H., Yue Z. Direct determination of nosiheptide residue in animal tissues by liquid chromatography-tandem mass spectrometry // J. Chromatogr. B. 2022. V. 1193. Article 123167. https://doi.org/10.1016/j.jchromb.2022.123167
  17. Melekhin A.O., Bulkatov D.P., Parfenov M.Y., Apyari V.V., Tolmacheva V.V. A dual column chromatographic method for simultaneous quantifying aminoglycosides and coccidiostats in milk // J. Food Compos. Anal. 2023. V. 121. Article 105369. https://doi.org/10.1016/j.jfca.2023.105369
  18. Melekhin A.O., Tolmacheva V.V., Goncharov N.O., Apyari V.V., Bulkatov D.P., Parfenov M.Y. et al. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization – magnetic solid-phase extraction // J. Pharm. Biomed. Anal. 2024. V. 237. Article 115764. https://doi.org/10.1016/j.jpba.2023.115764
  19. Bladek T.; Szymanek-Bany I.; Posyniak A. Determination of polypeptide antibiotic residues in food of animal origin by ultra-high-performance liquid chromatography-tandem mass spectrometry // Molecules. 2020. V. 25. Article 3261. https://doi.org/10.3390/molecules25143261
  20. Амелин В.Г., Федина Н.М., Подколзин И.В., Коротков А.И. Быстрый скрининг и определение остаточных количеств ветеринарных препаратов в молоке методом ультравысокоэффективной жидкостной хроматографии-квадруполь-времяпролетной масс-спектрометрии высокого разрешения // Журн. аналит. химии. 2018. Т. 73. № 6. С. 461. (Amelin V.G., Fedina N.M., Podkolzin I.V., Korotkov A.I. Rapid screening and determination of residual veterinary drugs in milk by ultrahigh performance liquid chromatography–high-resolution quadrupole time-of-flight mass spectrometry // J. Anal. Chem. 2018. V. 73. № 6. P. 576. https://doi.org/10.1134/S1061934818060023)
  21. Лаврухина О.И., Амелин В.Г., Киш Л.К., Третьяков А.В., Пеньков Т.Д. Определение остаточных количеств антибиотиков в объектах окружающей среды и пищевых продуктах // Журн. аналит. химии. 2022. Т. 77. № 11. С. 969. (Lavrukhina O.I., Amelin V.G., Kish L.K., Tretyakov A.V., Penkov T.D. Determination of residual amounts of antibiotics in environmental samples and food products // J. Anal. Chem. 2022. V. 77. № 11. P. 1349. https://doi.org/10.1134/s1061934822110077)
  22. Wang S., Zhou S., Liu W. Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics // Curr. Opin. Chem. Biol. 2013. V. 17. № 4. P. 626. https://doi.org/10.1016/j.cbpa.2013.06.021
  23. Chahar G., Deshmukh S., Banga H.S., Kaur P. Effect of feeding chitosan and blend of essential organic acids on growth performance, haematological parameters and innate immunity in early aged male layer chicks // Trop. Anim. Health. Prod. 2024. V. 56. Article 251. https://doi.org/10.1007/s11250-024-04081-0
  24. Технический регламент Таможенного союза (ТР ТС 021/2011) “О безопасности пищевой продукции” (Принят Решением Совета Евразийской экономической комиссии от 9.12.2011 № 880).
  25. GB 31650.1-2022 National food safety standard – Maximum residue limits for 41 veterinary drugs in foods.
  26. COMMISSION REGULATION (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
  27. Korea’s Positive List System for Veterinary Drugs September 01, 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences