Steady-state redox sorption of oxygen dissolved in water on granular layers of copper-ion-exchange nanocomposites

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of redox sorption of oxygen dissolved in water on cathodically polarized granular layers of copper-ion-exchange nanocomposites depending on the water flow rate and the value of polarizing current is studied. It is observed that initially the amount of absorbed oxygen exceeds the amount of leaked electricity. With time, the chemical activity of the nanocomposite decreases, and oxygen continues to be sorbed and further recovered mainly due to the current component of the process. Simultaneous increase in the water flow rate and the strength of the limiting current is concluded to have a favorable effect on the rate of oxygen uptake. Maintaining the constancy of the water supply mode and the respective current strength ensures a stationary course of diffusion, chemical, and electrochemical stages. Successive stages of external diffusive oxygen transfer to the surface of nanocomposite grains, intra-diffusive oxygen transfer along the grain pores and chemical oxidation of copper nanoparticles to oxides characteristic of the final sources are found to be compensated by the stages of electroreduction of oxygen from surface adsorbed complexes and regeneration of oxidation products into metallic copper nanoparticles. The nanocomposite is a continuous source of newly reduced metal particles and contributes to the oxygen redox sorption process reaching the stationary mode. Unlike the nonpolarizable granular layer, the oxygen concentration remains at a low constant level under the conditions of the maximum admissible electric current applied.

Full Text

Restricted Access

About the authors

T. A. Kravchenko

Voronezh State University

Author for correspondence.
Email: krav280937@yandex.ru
Russian Federation, Voronezh

O. A. Kozaderov

Voronezh State University

Email: krav280937@yandex.ru
Russian Federation, Voronezh

D. D. Vakhnin

Voronezh State University

Email: krav280937@yandex.ru
Russian Federation, Voronezh

I. A. Golovin

Voronezh State University

Email: krav280937@yandex.ru
Russian Federation, Voronezh

A. E. Martynov

Voronezh State University

Email: krav280937@yandex.ru
Russian Federation, Voronezh

References

  1. Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с. [Bagotsky V.S. Fundamentals of Electrochemistry M.: Chemistry, 1988. 400 р.]
  2. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия, Колос, 2006. 672 с. [Damaskin B.B., Petri O.A., Cirlina G.A. Electrochemistry M.: Chemistry, Kolos, 2006. 672 р.]
  3. Vukmirovic M.B., Vasiljevic N., Dimitrov N. et al. // J. Electrochemical Society. 2003. Vol. 150. Р. 10.
  4. Lu Y., Xu H., Wang J. et al. // J. Electrochimica Acta. 2009. V. 54. Р. 3972.
  5. Богдановская В.А., Тарасевич М.Р., Кузнецова Л.Н. и др. // Электрохимия. 2010. Т. 46. № 8. С. 985. [Bogdanovskaya V.A., Tarasevich M.R., Kuznetsova L.N. et al. // Electrochemistry. 2010. Vol. 46. № 8. P. 985.]
  6. Yang Y., Zhou Y. // J. Electroanalytical Chemistry. 1995. V. 397. P. 271.
  7. Яштулов Н.А., Ревина А.А. // Кинетика и катализ. 2013. Т. 54. № 3. С. 336. [Yashtulov N.A., Revina A.A. // Kinetics and catalysis. 2013. V. 54. № 3. P. 336.]
  8. Nie Y., Li L., Wei Z. // J. Chemical Society Rewiews. 2013. № 3. P. 1.
  9. Курысь Я.И., Додон Е.С., Уставицкая Е.А. и др. // Электрохимия. 2012. Т. 48. № 11. С. 1161–1168. [Kurys Ya.I., Dodon E.S., Ustavitskaya E.A. et al. // Electrochemistry. 2012. Vol. 48. № 11. P. 1161.]
  10. Гуревич С.А., Ильющенков Д.С., Явсин Д.А. и др. // Там же. 2017. Т. 53. № 6. С. 642. [Gurevich S.A., Ilyushenkov D.S., Yavsin D.A. et al. // Electrochemistry. 2017. Vol. 53. № 6. P. 642.]
  11. Chen X., Zhu H., Zhao J. et al. // Angewandte Chemie Int. Ed. 2008. № 47. P. 5353.
  12. Yang W., Li J., Lan J. et al. // Int. J. of Hydrogen Energy XXX. 2018. P. 1.
  13. Wang N., Lu B., Li L. et al. // ACS Catalysis. 2018. № 8. P. 6827.
  14. Qin Y., Ou Z., Xu C. et al. // Nanoscale Res. Lett. 2021. P. 1.
  15. Liu Q., Peng Y., Li Q. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 17641.
  16. Peera S., Kwon H., Lee T. et al. // Ionics. 2020. V. 26. P. 1563.
  17. Li Y., Nishidate K. // Int. J. of Hydrogen Energy. 2024. V. 51. P. 1471.
  18. Singh H., Zhuang S., Ingis B. et al. // Carbon. 2019. V. 151. P. 160.
  19. Yang Y., Qi W., Niu J. et al. // Int. J. of Hydrogen Energy XXX. 2020. V. 45. P. 15465.
  20. Zhu Y., Han C., Chen Z. // Int. J. of Hydrogen Energy. 2024. V. 60. P. 1359.
  21. Кузьмин А.В., Шаинян Б.А. // Успехи Химии. 2023. Т. 92. № 6. С. 1. [Kuzmin A.V., Shainyan B.A. // Russian Chemical Reviews. 2023. V. 92. № 6. P. 1.]
  22. Han C., Chen Z. // Applied Surface Science. 2020. V. 511. P. 1.
  23. Liang Z., Liu C., Chen M. et al. // New J. of Chemistry. 2019. V. 43. P. 19308.
  24. Ghandehari M.H., Andersen. T.N., Eyring H. // Corrosion Science. 1976. V. 16. P. 123.
  25. Крейзер И.В., Маршаков И.К., Тутукина М.Н., Зарцын И.Д. // Защита металлов. 2004. Т. 40. № 1. С. 28. [Kreizer I.V., Marshakov I.K., Tutukina M.N., Zartsyn I.D. // Protection of metals. 2004. V. 40. № 1. P. 28.]
  26. Маршаков И.К., Волкова Л.Е., Тутукина М.Н. и др. // Вестник ВГУ. 2005. № 2. С. 43. [Marshakov I.K., Volkova L.E., Tutukina M.N. et al. // Bulletin of the VSU. 2005. № 2. P. 43.]
  27. Nakajima Y., Abdul Latif M., Nagata T. et al. // J. Phys. Сhemistry. 2023. V. 18. № 24. P. 3570.
  28. Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи Химии. 2021. Т. 90. № 6. С. 644. [Istomin S.Y., Lyskov N.V., Mazo G.N. et al. // Russian Chemical Reviews. 2021. V. 90. № 6. P. 644.]
  29. Кравченко Т.А., Золотухина Е.В., Чайка М.Ю., Ярославцев А.Б. // Электрохимия нанокомпозитов металл–ионообменник. М.: Наука, 2013. 365 с. [Kravchenko T.A., Zolotukhina E.V., Chaika M.Yu., Yaroslavtsev A.B. // Electrochemistry of Nanocomposites Metal–Ion Exchanger. M.: Science. 2013. 365 р.]
  30. Muraviev D.N., Ruiz P., Munoz M. et al. // Reactive & Functional Polymers. 2011. № 71. P. 916.
  31. Горшков В.С., Захаров П.Н., Полянский Л.Н. и др. // Сорбционные и хроматографические процессы. 2014. Т. 14. № 4. С. 601. [Gorshkov V.S., Zakharov P.N., Polyansky L.N. et al. // Sorption and Chromatographic Processes. 2014. Vol. 14. № 4. P. 601.]
  32. Du C., Gao X., Chen W. // Chinese J. of Catalysis. 2016. № 37. P. 1049.
  33. Hussain S., Erikson H., Kongi N. et al. // J. Electrochemical Society. 2017. № 164. P. 1014.
  34. Богдановская В.А., Тарасевич М.Р. // Электрохимия. 2011. Т. 47. № 4. С. 404. [Bogdanovskaya V.A., Tarasevich M.R. // Electrochemistry. 2011. V. 47. № 4. P. 404.]
  35. Shao M. // Catalysts. 2015. № 5. P. 2115.
  36. Lu Y., Thia L., Fisher A. et al. // Science China Materials. 2017. № 60. P. 1109.
  37. Strbac S., Srejic I., Rakocevic Z. // J. Electroanalytical Chemistry. 2017. № 789. P. 76.
  38. Гутерман А.В., Пахомова Е.Б. Гутерман Е.В. и др. // Неорганические материалы. 2009. Т. 45. № 7. С. 829. [Guterman A.V., Pakhomova E.B. Guterman E.V. et al. // Inorganic Materials. 2009. V. 45. № 7. P. 829.]
  39. Меньщиков В.С., Беленов С.В., Новомлинский И.Н. и др. // Электрохимия. 2021. Т. 57. № 6. C. 331. [Menshchikov V.S., Belenov S.V., Novomlinsky I.N. et al. // Electrochemistry. 2021. V. 57. № 6. P. 331.]
  40. Selvaraju T., Ramaraj R. // PRAMANA – Indian Academy of Sciences. 2005. V. 65. № 4. P. 713.
  41. Lebedeva V.I., Gryaznov V.I., Petrova I.V. et al. // Kinetics and catalysis. 2006. V. 47. № 6. P. 867.
  42. Barau A., Budarin V., Luque R. et al. // Catal Lett. 2008. № 124. P. 204.
  43. Волков В.В., Кравченко Т.А., Ролдугин В.И. // Российские Нанотехнологии. 2013. Т. 82. № 5. С. 465. [Volkov V.V., Kravchenko T.A., Roldugin V.I. // Russian Nanotechnologies. 2013. Vol. 82. № 5. P. 465.]
  44. Слепцова О.В., Соцкая Н.В., Кравченко Т.А. // Журн. физ. химии. 1997. Т. 71. № 10. С. 1899. [Sleptsova O.V., Sotskaya N.V., Kravchenko T.A. // J. Phys.Сhemistry. 1997. V. 71. № 10. P. 1899.]
  45. Кравченко Т.А., Соцкая Н.В., Слепцова О.В. // Там же. 2000. Т. 74. № 6. С. 1111. [Kravchenko T.A., Sotskaya N.V., Sleptsova O.V. // Ibid. 2000. V. 74. № 6. P. 1111.]
  46. Полянский Л.Н. // Сорбционные и хроматографические Процессы. 2014. Т. 14. № 5. С. 813. [Polyansky L.N. // Sorption and Сhromatographic Рrocesses. 2014. V. 14. № 5. P. 813.]
  47. Полянский Л.Н., Горшков В.С., Вахнин Д.Д. и др. // Российские нанотехнологии. 2015. Т. 10. № 7–8. С. 46. [Polyansky L.N., Gorshkov V.S., Vakhnin D.D. et al. // Russian Nanotechnologies. 2015. V. 10. № 7–8. P. 558.]
  48. Хорольская С.В., Полянский Л.Н., Кравченко Т.А. и др. // Журн. физ. химии. 2014. Т. 88. № 6. С. 1002. [Khorolskaya S.V., Polyansky L.N., Kravchenko T.A. et al. // J. Phys. Сhemistry. 2014. V. 88. № 6. P. 1000.]
  49. Полянский Л.Н., Коржов Е.Н., Вахнин Д.Д и др. // Журн. физ. химии. 2016. Т. 90. № 8. С. 1267. [Polyansky L.N., Korzhov E.N., Vakhnin D.D. et al. // J. Phys. Сhemistry. 2016. V. 90. № 8. P. 675.]
  50. Полянский Л.Н., Коржов Е.Н., Вахнин Д.Д. и др. // Журн. физ. химии. 2016. Т. 90. № 9. С. 1414. [Polyansky L.N., Korzhov E.N., Vakhnin D.D. et al. // J. Phys. Сhem. 2016. V. 90. № 9. P. 1889.]
  51. Вахнин Д.Д., Придорогина В.Е., Полянский Л.Н. и др. // Журн. физ. химии. 2018. Т. 92. № 1. С. 155. [Vakhnin D.D., Pridorogina V.E., Polyansky L.N. et al. // J. Phys. Сhem. 2018. V. 92. № 1. P. 172.]
  52. Вахнин Д.Д., Полянский Л.Н., Кравченко Т.А. и др. // Журн. физ. химии. 2019. Т. 93. № 5. С. 749. [Vakhnin D.D., Polyansky L.N., Kravchenko T.A. et al. // J. Phys. Сhem. 2019. Vol. 93. № 5. Р. 793.]
  53. Кравченко Т.А., Конев Д.В., Вахнин Д.Д. и др. // Российские Нанотехнологии. 2019. Т. 14. № 11–12. С. 15. [Kravchenko T.A., Konev D.V., Vakhnin D.D. et al. // Russian Nanotechnologies. 2019. V. 14. № 11–12. P. 15.]
  54. Кравченко Т.А., Вахнин Д.Д., Придорогина В.Е. и др. // Сорбционные и хроматографические процессы. 2020. Т. 20. № 4. С. 539. [Kravchenko T.A., Vakhnin D.D., Pridorogina V.E. et al. // Sorption and Chromatographic Processes. 2020. V. 20. № 4. Р. 539.]
  55. Кравченко Т.А., Шевцова Е.А., Крысанов В.А. // Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С. 630. [Kravchenko T.A., Shevtsova E.A., Krysanov V.A. // Sorption and Chromatographic Processes. 2021. V. 21. № 5. P. 630.]
  56. Вахнин Д.Д., Фертикова Т.Е. Полянский Л.Н. и др. // Российские нанотехнологии. 2022. Т. 17. № 6. С. 799. [Vakhnin D.D., Fertikova T.E., Polyansky L.N. et al. // Russian Nanotechnologies. 2022. V. 17. № 6. P. 766.]
  57. Кравченко Т.А., Крысанов В.А., Головин И.А. // Электрохимия. 2023. Т. 59. № 3. С. 134. [Kravchenko T.A., Krysanov V.A., Golovin I.A. // Electrochemistry. 2023. V. 59. № 3. P. 1729.]
  58. Кравченко Т.А., Фертикова Т.Е., Головин И.А. и др. // Журн. физ. химии. 2023. Т. 97. № 12. С. 1729. [Kravchenko T.A., Fertikova T.E., Golovin I.A. et al. // J. Physics Chemistry. 2023. V. 97. № 12. P. 2768.]
  59. Кравченко Т.А., Полянский Л.Н., Калиничев А.И., Конев Д.В. // Нанокомпозиты металл-ионообменник. М.: Наука, 2009. 391 с. [Kravchenko T.A., Polyansky L.N., Kalinichev A.I., Konev D.V. // Metal–Ion Exchanger Nanocomposites. M.: Science, 2009. 391 р.]
  60. Чайка М.Ю., Кравченко Т.А., Полянский Л.Н. и др. // Электрохимия. 2008. Т. 44. № 11. С. 1337. [Chaika M.Y., Kravchenko T.A., Polyansky L.N. et al. // Electrochemistry. 2008. V. 44. № 11. P. 857.]
  61. Полянский Л.Н., Горшков В.С., Кравченко Т.А. // Журн. физ. химии. 2012. Т. 86. № 1. С. 121. [Polyansky L.N., Gorshkov V.S., Kravchenko T.A. // J. Phys. Сhem. 2012. V. 86. № 1. P. 114.]
  62. Сергеева О.В., Рахманов C.K. Введение в нанохимию: пособие для студентов хим. фак. Минск. 2009. 178 с. [Sergeeva O.V., Rakhmanov S.K. Introduction to nanochemistry: The schoolbook for students. Minsk. 2009. 178 р.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of a seven-stage electrodeoxygenator with granular NC packing in the cathode chamber for removing oxygen dissolved in water: K – cathodes, A – anodes, MK-40 – membrane, Lewatit K2620(Na+) – granulated sulfocation exchanger, Cu0∙Lewatit K2620(Na+) – nanocomposite, R – resistors with variable resistance, Rj – resistance of the j-stage, Ij – current strength at the j-stage.

Download (334KB)
3. Fig. 2. Kinetic dependences of the concentration of oxygen dissolved in water C (a) and the relative concentration of oxygen C/C0 (b) in water at the outlet of the cathode-polarized granular layer of the Cu0·Lewatit K2620(Na+) nanocomposite in a single-stage electrolyzer with different water flow rates u, cm/s: 1– 0.33; 2– 0.50. Curves: 1, 2 – oxygen concentration C0 at the inlet to the granular layer; 1ʹ, 2ʹ – oxygen concentration C at the exit from the granular layer, 3 – relative oxygen concentration at the exit.

Download (209KB)
4. Fig. 3. Time dependences of the quantity Q(a) and the rate dQ/dt(b) of oxygen absorption from water by a granular layer of Cu0·Lewatit K2620(Na+) nanocomposite in a single-stage electrolyzer with different water flow rates u, cm/s: 1– 0.33; 2– 0.50. Curves: 1, 2 – total amount of absorbed oxygen; 1ʹ, 2ʹ – amount of oxygen absorbed due to current.

Download (222KB)
5. Fig. 4. Kinetic dependences of the concentration of oxygen C dissolved in water (a) and the relative concentration of oxygen C/C0 (b) in water at the outlet of the cathodically polarized granular layer of Cu0·LewatitK2620(Na+) nanocomposite in a seven-stage electrolyzer with different water flow rates u, cm/s: 1– 0.33; 2– 0.50. Curves: 1, 2 – oxygen concentration C0 at the inlet to the granular layer; 1ʹ, 2ʹ – oxygen concentration C at the exit from the granular layer, 3 – relative oxygen concentration at the exit.

Download (200KB)
6. Fig. 5. Time dependences of the quantity Q (a) and the rate dQ/dt (b) of oxygen absorption from water by a granular layer of Cu0·Lewatit K2620(Na+) nanocomposite in a seven-stage electrolyzer with different water flow rates u, cm/s: 1 – 0.33; 2 – 0.50. Curves 1, 2 – total amount of absorbed oxygen; 1ʹ, 2ʹ – amount of oxygen absorbed due to current.

Download (219KB)
7. Fig. 6. Micrographs of sections of grains of the Cu0∙Lewatit K2620 nanocomposite during electroreduction of oxygen dissolved in water with the maximum permissible current (I/Ilim ≈ 1); a – initial state, b – I/Ilim1.

Download (821KB)
8. Fig. 7. Spatial diagram of the oxygen reduction process on a cathodically polarized copper-ion-exchange nanocomposite: A – anode, M – ion-exchange membrane, K – cathode. The line above the symbol indicates belonging to the ion-exchange matrix.

Download (97KB)

Copyright (c) 2025 Russian Academy of Sciences