Rhodium electronic state in catalysts based on Rh/НZSM-5 for oxidative carbonylation of methane into acetic acid: effect of copper and zinc doping

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Diffuse reflectance infrared Fourier transform spectroscopy of adsorbed carbon monoxide is used along with X-ray absorption spectroscopy to study the effect a second alloying metal (Zn, Cu) has on the electronic state and local structure of rhodium on the surfaces of Rh/HZSM-5 zeolite catalyst. It is established that introducing copper and zinc helps improve the stability of rhodium toward aggregation (the formation of clusters) under conditions of the oxidative carbonylation of methane into acetic acid. Compared to monometallic catalyst Rh/HZSM-5, where single atom rodium sites are partially aggregated into clusters, the proportion of Rh° is halved in the case of Rh–Zn/HZSM-5, and Rh clustering does not occur in the case of Rh‒Cu/HZSM-5. The stabilizing effect of Cu is due to the interaction between copper and rhodium cations on the surface of zeolite.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Shilina

Lomonosov Moscow State University

Email: batova.ti@ips.ac.ru

Faculty of Chemistry

Ресей, Moscow, 119991

E. Khramov

National Research Center Kurchatov Institute

Email: batova.ti@ips.ac.ru
Ресей, Moscow, 123098

T. Batova

Topchiev Institute of Petrochemical Synthesis

Хат алмасуға жауапты Автор.
Email: batova.ti@ips.ac.ru
Ресей, Moscow, 119991

N. Kolesnichenko

Topchiev Institute of Petrochemical Synthesis

Email: batova.ti@ips.ac.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Kumar P., Al-Attas T.A., Hu J., Kibria M.G. // ACS Nano. 2022. V. 16. P. 8557. https://doi.org/10.1021/acsnano.2c02464
  2. Shi Y.J., Zhou Y.W., Lou Y. et al. // Adv. Sci. 2022. V. 9. P. 2201520. https://doi.org/10.1002/advs.202201520
  3. Moteki T., Tominaga N., Ogura M. // Appl. Cat. B: Env. 2022. V. 300. P. 120742. https://doi.org/10.1016/j.apcatb.2021.120742
  4. Oda A., Horie M., Murata N. et al. // Catal. Sci. Technol. 2022. V. 12. P. 5488. https://doi.org/10.1039/d2cy01471h
  5. Kou Z., Zang W., Wang P. et al. // Nanoscale Horiz. 2020. V. 5. P. 757. https://doi.org/10.1039/D0NH00088D
  6. Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
  7. Ye Ch., Zhang N., Wang D., Li Y. // Chem. Commun. 2020. V. 56. P. 7687. https://doi.org/10.1039/D0CC03221B
  8. Xiong H., Datye A.K., Wang Y. // Adv. Mater. 2021. V. 33. P. 2004319. https://doi.org/10.1002/adma.202004319
  9. Alvarez-Galvan C., Melian M., Ruiz-Matas L. et al. // Front. Chem. 2019. V. 7. P. 104. https://doi.org/10.3389/fchem.2019.00104
  10. Hou Y., Nagamatsu Sh., Asakura K. et al. // Commun. Chem. 2018. V. 1. P. 41. https://doi.org/10.1038/s42004-018-0044-9
  11. Prieto G., Zečevic J., Friedrich H. et al. // Nat. Mater. 2013. V. 12. P. 34. https://doi.org/10.1038/nmat3471
  12. Feng S., Song X., Ren Zh., Ding Y. // Ind. Eng. Chem. Res. 2019. V. 58. P. 4755. https://doi.org/10.1021/acs.iecr.8b05402
  13. Batova T.I., Stashenko A.N., Obukhova T.K. et al. // Micropor. Mesopor. Mater. 2023. V. 366. P. 112953. https://doi.org/10.1016/j.micromeso.2023.112953
  14. Pappas D.K., Borfecchia E., Dyballa M. et al. // Chem. Cat. Chem. 2019. V. 11. P. 621. https://doi.org/10.1002/cctc.201801542
  15. Zhang P., Yang X., Hou X. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6297. https://doi.org/10.1039/C9CY01749F
  16. Mahyuddin M.H., Tanaka S., Shiota Y., Yoshizawa K. // Bull. Chem. Soc. Jpn. 2020. V. 93. P. 345. https://doi.org/10.1246/bcsj.20190282
  17. Wang S., Guo Sh., Luo Y. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6613. https://doi.org/10.1039/C9CY01803D
  18. Matsubara H., Tsuji E., Moriwaki Y. et al. // Catal. Lett. 2019. V. 149. P. 2627. https://doi.org/10.1007/s10562-019-02855-y
  19. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. T. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
  20. Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
  21. Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
  22. Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // Catal. 2005. V. 236. P. 168. https://doi.org/10.1016/j.jcat.2005.09.017
  23. Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
  24. Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
  25. Davydov A. Edited by Sheppard N. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. P. 668. https://doi.org/10.1016/s1351-4180(03)01049-3
  26. Hadjiivanov K.I., Vayssilov G.N. // Adv. Catal. 2002. V. 47. P. 307. http://dx.doi.org/10.1016/0920-5861(95)00163-8
  27. Asokan C., Thang H., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
  28. Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
  29. Шилина М.И., Обухова Т.К., Батова Т.И., Колесниченко Н.В. // Журн. физ. химии. 2023. Т. 97. № 7. С. 944. https://doi.org/10.31857/S0044453723070269 [Shilina M.I., Obukhova T.K., Batova T.I., Kolesnichenko N.V. // Russ. J. Phys. Chem. A. 2023. V. 97. № 7. P. 1387. https://doi.org/10.1134/S0036024423070269]
  30. Субботин А.Н., Жидомиров Г.М., Субботина И.Р., Казанский В.Б. // Кинетика и катализ. 2013. Т. 54. № 6. С. 786. https://doi.org/10.7868/S0453881113060130 [Subbotin A.N., Zhidomirov G.M., Subbotina I.R., Kazansky V.B. // Kinet. Catal. 2013. V. 54. № 6. Р. 744. https://doi.org/10.1134/s002315841306013x]
  31. Palomino G.T., Fisicaro P., Bordiga S. et al. // J. Phys. Chem. B. 2000. V. 104. P. 4064. https://doi.org/10.1021/jp993893u
  32. Ikuno T., Grundner S., Jentys A. et al. // J. Phys. Chem. C. 2019. V. 123. P. 8759. https://doi.org/10.1021/acs.jpcc.8b10293
  33. Sushkevich V.L., van Bokhoven J.A. // Chem. Commun. 2018. V. 54. P. 7447. https://doi.org/10.1039/c8cc03921f
  34. Lamberti C., Groppo E., Spoto G. et al. // Adv. Catal. 2007. V. 51. P. 1. https://doi.org/10.1016/S0360-0564(06)51001-6
  35. Ivanin I.A., Udalova O.V., Kaplin I.Yu., Shilina M.I. // Applied Surface Science. 2024. V. 655. P. 159577. https://doi.org/10.1016/j.apsusc.2024.159577
  36. Skinner W.M., Prestidge C.A., Smart R.St.C. // Surf. Interf. Anal. 1996. V. 24. P. 620. https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<620:: AID-SIA151>3.0.CO;2-Y
  37. Carrasco E., Oujja M., Sanz M. et al. // Microchem J. 2018. V. 137. P. 381. https://doi.org/10.1016/j.microc.2017.11.014

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. XANES (a) and EXAFS spectra (b) at the Rh K-edge of the initial and spent rhodium-containing catalysts: Rh/НZ, Rh-Cu/HZ and Rh-Zn/HZ.

Жүктеу (420KB)
3. Fig. 2. XANES (a) and EXAFS spectra (b) at the K-edge of Zn for the initial and spent bimetallic catalysts Rh-Zn/HZ.

Жүктеу (272KB)
4. Fig. 3. XANES (a) and EXAFS spectra (b) at the Cu K-edge for the initial and spent bimetallic catalysts Rh-Cu/HZ.

Жүктеу (288KB)
5. Fig. 4. IR spectra of adsorbed CO on zinc and rhodium containing samples: Zn/HZ (1) and Rh-Zn/HZ (2), Rh/HZ (3) and unmodified HZ (4) at an equilibrium pressure of 3 Torr, 298K; k is the wave number, ε is the absorption.

Жүктеу (291KB)
6. Fig. 5. IR spectra of DO of adsorbed CO on copper- and rhodium-containing samples: Cu/HZ (1) and Rh-Cu/HZ (2), Rh/HZ (3) and unmodified HZ (4) at a pressure of 3 Torr; k is the wave number, ε is the absorption.

Жүктеу (284KB)
7. Fig. 6. IR spectra of DO of adsorbed CO on copper- and rhodium-containing samples: Cu/HZ (1) and Rh-Cu/HZ (2), Rh/HZ (3) with adsorption of 5 μmol/g CO (a). Spectra 3 and 2 shown on an enlarged scale, and their difference spectrum (b).

Жүктеу (360KB)

© Russian Academy of Sciences, 2025