Critical wetting point in the liquid lead-molten alkali metal halogenide system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Experimental data on the surface tension of liquid lead and molten sodium, potassium, and cesium halogenides at the interface with the gaseous phase along with the values of interfacial tension between them formed the basis for analyzing the phase transition of surface wetting in two-phase high-temperature systems. The dependence of the work of adhesion of the molted salt to the metal on temperature and nature of contacting phases is established. Conditions of transition from partial wetting of the metal surface by molted salt to the film mode are found.

Texto integral

Acesso é fechado

Sobre autores

V. Stepanov

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: v.stepanov@ihte.ru
Rússia, Ekaterinburg

Bibliografia

  1. Heady R.B., Cahn J.W. // J. Chem. Phys. 1973. V. 58. P. 896.
  2. Moldover M.R., Cahn J.W. // Science. 1980. V. 207. P. 1073.
  3. Schmidt J.W., Moldover M.R. // J. Chem. Phys. 1983. V. 79. P. 370.
  4. De Gennes P.G. // Rev. Mod. Phys. 1985. V. 57. P. 827.
  5. Bonn D. // Current Oppinion in Colloid Interface Sci. 2001. V. 6. P. 22.
  6. Bonn D., Eggers J., Indekeu J., Meunier J. // Rev. Mod. Phys. 2009. V. 81. P. 739.
  7. Cahn J.W. // J. Chem. Phys. 1977. V. 66. P. 3667.
  8. Степанов В.П. // Журн. физ. химии. 2023. Т. 97. С. 1660.
  9. Pershin P., Khalimullina Yu., Arkhipov P., Zaikov Yu. // J. Electrochem. Soc. 2014. V. 161. D824–D830.
  10. Arkhipov P.A., Zaikov Yu.P., Khalimullina Yu.R. et al. // J. Mol. Liquids. 2022. V. 361. P. 119619.
  11. Лебедев В.А. Избирательность жидкометаллических электродов в расплавленных галогенидах. Челябинск: Металлургия, 1993.
  12. Lewin R.G., Harrison M.T. Reprocessing and recycling of spent nuclear fuel. Cambridge: Woodhead Publishing Series in Energy. 2015.
  13. Mirza M., Abdulaziz R., Maskell W.C. et al. // Energy Environ. Sci. 2023. V. 16. P. 952.
  14. Исаева Л.А., Поляков П.В., Михалев Ю.Г., Рогозин Ю.Н. // Электрохимия. 1984. Т. 20. С. 957.
  15. Степанов В.П. Межфазные явления в ионных солевых расплавах. Екатеринбург: УИФ “Наука”, 1993.
  16. Tanaka T., Nakamoto M., Oguni R. et al. // Z. Metallkunde. 2004. V. 95. P. 818.
  17. Smirnov M.V., Stepanov V.P. // Electrochim. Аcta. 1982. V. 27. P. 1551.
  18. Справочник химика / Под ред. Б.П. Никольского. Л.-М.: ГХИ. 1962. Т. 1.
  19. Chaudhary S., Ranjan P., Chakraborty T. // J. Chem. Res. 2020. V. 44. P. 227.
  20. Делимарский Ю.К. Электрохимия ионных расплавов. М.: Металлургия, 1978.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Interfacial tension of lead in halide melts as a function of temperature.

Baixar (161KB)
3. Fig. 2. Dependence of interfacial tension at the boundary of lead with molten salt at 1100 K on the size of the cation (from left to right: Na+, K+, Cs+).

Baixar (116KB)
4. Fig. 3. Work of adhesion of alkali metal halide melts to liquid lead as a function of temperature.

Baixar (185KB)
5. Fig. 4. The work of adhesion between liquid lead and melts of sodium, potassium and cesium halides depending on the sum of polarizabilities of the ions of the salt phase at 1100 K.

Baixar (107KB)
6. Fig. 5. The spreading rate of molten salt on the surface of liquid lead as a function of temperature

Baixar (175KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025