Thermodynamic characteristics of copper(I) perfluorocyclohexanoate C6F11COOCu

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The [Сu—C6F11COOAg] system was studied using thermogravimetry, differential scanning calorimetry and mass spectrometry methods. It has been established that in the temperature range 370–445 K, a solid-phase exchange reaction occurs in the condensed phase of the system with the formation of C6F11COOCu and silver. The enthalpy of this reaction was found to be ΔrHo298.15 = –17.5 ± 4.0 and the standard enthalpy of formation of a crystalline copper complex ΔfHo298.15 = –2769 ± 25 kJ/mol. Sublimation of the copper complex is accompanied by the transition into the gas phase of dimeric (C6F11COOCu)2 ΔsHoТ = 134.4 ± 7.2 kJ/mol and a small amount of tetrameric molecules (C6F11COOCu)4. The standard enthalpy of formation of the dimer complex in the gas phase was calculated to be ΔfHo298.15 = –5404 ± 26 kJ/mol. The paper examines the possibility of exothermic interaction of copper perfluorocyclohexanoate with metallic copper in the condensed phase.

Авторлар туралы

I. Malkerova

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Хат алмасуға жауапты Автор.
Email: alikhan@igic.ras.ru
Ресей, Moscow

D. Kayumova

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Ресей, Moscow

D. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Ресей, Moscow

А. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Ресей, Moscow

А. Sidorov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Ресей, Moscow

А. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. Сыркин В.Г. CVD-метод. Химическая парофазная металлизация. М.: Наука, 2000. 496 с.
  2. Grodzicki A., Łakomska I., Piszczek P. et al. // Coord. Chem. Rev. 2005. V. 249. P. 2232. https://doi.org/10.1016/j.ccr.2005.05.026
  3. Jakob A., Shen Y., Wächtler T. et al. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 2226. https://doi.org/10.1002/zaac.200800189
  4. Mothes R., Rüffer T., Shen Y. et al. // Dalton Trans. 2010. V. 39. P. 11235. https://doi.org/10.1039/C0DT00347F
  5. Choi K.-K., Rhee S.-W. // Thin Solid Films. 2001. V. 397. P. 70. https://doi.org/10.1016/S0040-6090(01)01406-7
  6. Jang J., Chung S., Kang H. et al. // Thin Solid Films. 2016. V. 600. P. 157. https://doi.org/10.1016/j.tsf.2016.01.036
  7. Huo J., Solanki R., McAndrew J. // J. Mater. Res. 2002. V. 17. P. 2394. https://doi.org/10.1557/JMR.2002.0350
  8. Li Z., Barry S.T., Gordon R.G. // Inorg. Chem. 2005. V. 44. P. 1728. https://doi.org/10.1021/ic048492u
  9. Hlina J., Reboun J., Hamacek A. // Scripta Mater. 2020. V. 176. P. 23. https://doi.org/10.1016/j.scriptamat.2019.09.029
  10. Cory N.J., Visser E., Chamier J. et al. // Appl. Surf. Sci. 2022. V. 576. P. 151822. https://doi.org/10.1016/j.apsusc.2021.151822
  11. Yildirim G., Yücel E. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 19057. https://doi.org/10.1007/s1085-022-08743-3
  12. Good W., Scott D., Waddington G. // J. Phys. Chem. 1956. V. 60. P. 1080. https://doi.org/10.1021/j150542a014
  13. Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 2017. V. 130. P. 2211. https://doi.org/10.1007/s10973-017-6583-y
  14. Kayumova D.B., Malkerova I.P., Yambulatov D.S. et al. // Russ.J. Coord. Chem. 2024. V. 50. No. 3. P. 211
  15. Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
  16. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1972. Т. VI. Ч. I.
  17. Chase M.W., Jr., Curnutt J.L., Downey J.R., Jr. et al. // J. Phys. Chem. Ref. Data. 1982. V. 11. P. 695. https://doi.org/10.1063/1.555666
  18. Ehlert T.C., Wang J.S. // J. Phys. Chem. 1977. V. 81. P. 2069. https://doi.org/10.1021/j100537a005
  19. Ehlert T.C. // J. Phys. Chem. 1969. V. 73. P. 949. https://doi.org/10.1021/j100724a032
  20. Chase M.W., Jr. // J. Phys. Chem. Ref. Data. 1998. V. 9. P. 1.
  21. Kolesov V.P., Zenkov I.D., Skuratov S.M. // Russ. J. Phys. Chem. 1962. V. 36. P. 45.
  22. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1970. Т. IV. Ч. I.
  23. Amphlett J.C., Dacey J.R., Pritchard G.O. // J. Phys. Chem. 1971. V. 75. P. 3024. https://doi.org/10.1021/j100688a028
  24. Смирнова Н.Н., Лебедев Б.В. // Высокомолекулярные соединения. 1990. Т. 32. № 12. С. 2356.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024