Quantum-chemical simulation of the C60 fullerenes interaction with allyl chloride vinyl-type model growth radicals
- Authors: Diniakhmetova D.R.1, Kolesov S.V.1
-
Affiliations:
- Ufa Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 43, No 12 (2024)
- Pages: 30-39
- Section: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://hum-ecol.ru/0207-401X/article/view/684175
- DOI: https://doi.org/10.31857/S0207401X24120036
- ID: 684175
Cite item
Abstract
Stepwise fourfold addition reactions of vinyl chloride type of allyl chloride growth radicals to fullerene C60 leading to formation of adduct’s almost all possible types have been considered. The reactions product structures have been analyzed and the thermal characteristics, such as thermal effects and enthalpies of activation, have been calculated. At the radical-initiated interaction of allyl chloride and fullerene C60, up to three allyl chloride growth radicals’ addition is possible. In this case, the trisadducts are stable allyl type radicals, which can attach a fourth allyl chloride radical to form molecular products.
About the authors
D. R. Diniakhmetova
Ufa Federal Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: diniakhmetova@rambler.ru
Ufa Institute of Chemistry
Russian Federation, UfaS. V. Kolesov
Ufa Federal Research Centre of the Russian Academy of Sciences
Email: diniakhmetova@rambler.ru
Ufa Institute of Chemistry
Russian Federation, UfaReferences
- T. Cao, S.E. Webber. Macromolecules. 28 (10), 3741 (1995). https://doi.org/10.1021/ma00114a033
- T. Cao, S.E. Webber. Macromolecules. 29 (11), 3826 (1996). https://doi.org/10.1021/ma9517761
- D. Stewart, C.T. Imrie. Chem. Commun. (11), 1383 (1996). https://doi.org/10.1039/CC9960001383
- N. Arsalani, K.E. Geckeler. Fullerene Sci. Technol. 4 (5), 897 (1996). https://doi.org/10.1080/10641229608001151
- M. Seno, H. Fukunaga, T. Sato. J. Polym. Sci., Polym. Chem. 36 (16), 2905 (1998). https://doi.org/10.1002/(SICI)1099-0518(19981130) 36:16<2905::AID-POLA9>3.0.CO;2-9
- Y. Chen, K.-C. Lin. J. Polym. Sci., Polym. Chem. 37 (15), 2969 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990801) 37:15<2969::AID-POLA30>3.0.CO;2-G
- W.T. Ford, T. Graham, T.H. Mourey. Macromolecules. 30 (21), 6422 (1997). https://doi.org/10.1021/ma970238g
- W.T. Ford, T. Nishioka, S.C. McCleskey et al. Macromolecules. 33 (7), 2413 (2000). https://doi.org/10.1021/ma991597+
- C. Schröder. Fullerene Sci. Technol. 9 (3), 281 (2001). https://doi.org/10.1081/FST-100104494
- M. Seno, M. Maeda, T. Sato. J. Polym. Sci., Polym. Chem. 38 (14), 2572 (2000). https://doi.org/10.1002/1099-0518(20000715) 38:14<2572::AID-POLA80>3.0.CO;2-3
- S.V. Kurmaz, A.N. Pyryaev, N.A. Obraztsova. Polym. Sci. Ser. B. 53 (9-10), 497 (2011). https://doi.org/10.1134/S156009041109003X
- R. Singh, D. Srivastava, S.K. Upadhyay. J. Macromol. Sci. A. 48 (8), 595 (2011). https://doi.org/10.1080/15226514.2011.586267
- R. Singh, D. Srivastava, S.K. Upadhyay. Polym. Sci. Ser. B. 54 (1-2), 88 (2012). https://doi.org/10.1134/S1560090412020066
- R. Singh, D. Srivastava, S.K. Upadhyay. Des. Monomers Polym. 15 (3), 311 (2012). https://doi.org/10.1163/156855511X615704
- S.V. Kurmaz, V.V. Nedel’ko, E.O. Perepelitsina et al. Russ. J. Gen. Chem. 83 (3), 496 (2013). https://doi.org/10.1134/S107036321303016X
- R.K. Yumagulova, S.I. Kuznetsov, D.R. Diniakhmetova, et al. Kinet. Catal. 57 (3), 380 (2016). https://doi.org/10.1134/S0023158416030150
- J. Cousseau et al. ECS Meet. Abstr.Abstract 865 (2006). https://doi.org/10.1149/MA2005-01/21/865
- C.-W. Huang, Y.-Y. Chang, C.-C. Cheng et al. Polymers. 14 (22), 4923 (2022). https://doi.org/10.3390/polym14224923
- A.V. Baskar, M.R. Benzigar, S.N. Talapaneni et al. Adv. Funct. Mater., 32 (6), 2106924 (2022). https://doi.org/10.1002/adfm.202106924
- K. Sakakibara, A. Wakiuchi, Y. Murata et al. Polym. Chem. 11 (27), 4417 (2020). https://doi.org/10.1039/D0PY00458H
- E.G. Atovmyan, Russian Chemical Bulletin. 66 (3), 567 (2017). https://doi.org/10.1007/s11172-017-1773-0
- R.K. Yumagulova, S.V. Kolesov. Bulletin of Bashkir university. 25 (1), 47 (2020). https://doi.org/10.33184/bulletin-bsu-2020.1.8 [In Russian]
- K.M. Rogers, P.W. Fowler. Chem. Commun. 23, 2357 (1999). https://doi.org/10.1039/A905719F
- I.N. Ioffe, A.A. Goryunkov, O.V. Boltalina et al. Fullerenes, Nanotubes and Carbon Nanostructures. 12 (1–2), 169 (2005). https://doi.org/10.1081/FST-120027152
- D.Sh. Sabirov, R.G. Bulgakov, Chem. Phys. Lett. 506 (1–3), 52 (2011). https://doi.org/10.1016/j.cplett.2011.02.040
- N.P. Evlampieva, A.V. Yakimanskii, A.V. Dobrodumov et al. Russ. J. Gen. Chem. 75 (5), 751 (2005). https://doi.org/10.1007/s11176-005-0313-z
- D.Sh. Sabirov, R.R. Garipova, R.G. Bulgakov, J. Phys. Chem. A. 117 (49), 13176 (2013). https://doi.org/10.1021/jp409845q
- Handbook of Fullerene Science and Technology / Eds. Lu X., Akasaka T., Slanina Z. Singapore: Springer, 2021. Part II. P. 541.
- D.R. Diniakhmetova, A.K. Frizen, R.K. Yumagulova et al. Polymer Science. Series B. 60 (3), 414 (2018). https://doi.org/10.1134/S156009041803003X
- D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Int. J. Quantum Chem. 116 (7), 489 (2016). https://doi.org/10.1002/qua.25071
- D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Int. J. Quantum Chem. 120 (18), e26335 (2020). https://doi.org/10.1002/qua.26335
- M.R.J. Sarvestani, Z. Doroudi. Rus. J. Phys. Chem. B. 16 (5), 820 (2022). https://doi.org/10.1134/S1990793122050098
- F. Azarakhshi, M. Khaleghian. Rus. J. Phys. Chem. B. 15 (1), 170 (2021). https://doi.org/10.1134/S1990793121010152
- F. Akman. Rus. J. Phys. Chem. B. 15 (3), 517 (2021). https://doi.org/10.1134/S1990793121030027
- R.A. Sadykov, S.L. Khursan, A.A. Sukhanov et al. Rus. J. Phys. Chem. B. 17 (6). 1251 (2023). https://doi.org/10.1134/S1990793123060209
- A.H. Davtyan, Z.O. Manukyan, S.D. Arsentev et al. Rus. J. Phys. Chem. B. 17 (2). 336 (2023). https://doi.org/10.1134/S1990793123020239
- D.N. Laikov, PRIRODA, Electronic Structure Code, Version 6, 2006.
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- D.N. Laikov, Y.A. Ustynyuk. Russ. Chem. Bull. Int. Ed., 54, 820 (2005). https://doi.org/10.1007/s11172-005-0329-x
- D.Sh. Sabirov, R.G. Bulgakov. Comput. Theor. Chem. 963 (1), 185 (2011). https://doi.org/10.1016/j.comptc.2010.10.016
- V.V. Zverev, V.I. Kovalenko, I.P. Romanova et al. Int. J. Quantum Chem. 107 (13), 2442 (2007). https://doi.org/10.1002/qua.21373
- E.Ya. Misochko, A.V. Akimov, V.A. Belov et al. J. Chem. Phys. 127, 084301 (2007). https://doi.org/10.1063/1.2768350
- A.F. Shestakov. Russ. J. Gen. Chem. 78 (4), 811 (2008). https://doi.org/10.1134/S1070363208040403
- E.W. Godly, R. Taylor, Pure Appl. Chem. 69 (7), 1411 (1997). https://doi.org/10.1351/pac199769071411
- R.J. Taylor, J. Chem. Soc. Perkin Trans. 2, 813 (1993).
- N.V. Ulitin, K.A. Tereshchenko, A.K. Friesen et al. Int. J. Chem. Kinet. 50 (10), 742 (2018). https://doi.org/10.1002/kin.21209
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmanil, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox. Gaussian 09, Revision C.01, Gaussian, Inc.: Wallingford CT, 2010.
- D.R. Diniakhmetova, A.K. Friesen, S.V. Kolesov. Rus. J. Phys. Chem. B. 14 (6), 922 (2020). https://doi.org/10.1134/S1990793120060032
- P. J. Krusic, E. Wasserman, P. N. Keizer et al. Science. 254 (5035), 1183 (1991). https://doi.org/10.1126/science.254.5035.1183
Supplementary files
