Preparation of submicron cobalt films using cobalt oxalate as a precursor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility of obtaining porous two-dimensional cobalt structures (films) with submicron thickness using cobalt oxalate as a precursor during heat treatment in a hydrogen flow has been established. It is shown that the formation of two-dimensional structures on liquid low-melting metals (In, Ga) allows avoiding the formation of cracks and increases the integrity of Co films. It is shown that the thickness of Co films on Si reaches 100 nm, but the linear size of such cobalt sheets does not exceed 20 microns. The use of low-melting indium as a substrate makes it possible to increase the average size of Co films compared to Co films on silicon without an intermediate indium layer. The material is a thin two-dimensional layered structure of porous cobalt formed by interlacing metal chains. The film thickness is ~ 500 nm, and the linear size reaches 200 microns. The possibility of obtaining a durable metal film of Co-10% Ga on a massive drop of gallium measuring 20x15 mm has been established.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Alymov

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

N. Rubtsov

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nmrubtss@mail.ru
Ресей, Chernogolovka; Moscow

V. Zelensky

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

A. Ankudinov

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

O. Boyarchenko

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

A. Sychev

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

V. Chernysh

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

G. Tsvetkov

Merzhanov Institute of Structural Macrokinetics and Problems of Material Science of the Russian Academy of Sciences

Email: nmrubtss@mail.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Kafizas A., Carmalt C. J., Parkin I. P. // Coord. Chem. Rev. 2013. V. 257. P. 2073. https://doi.org/10.1016/j.ccr.2012.12.004
  2. Chang L., Montoye R.K., Nakamura Y. et al. // IEEE J. Solid State Circuits. 2008. V. 43. P. 956. https://doi.org/10.1109/JSSC.2007.917509
  3. Ivanova A. R., Nuesca G., Chen X. et al. // J. Electrochem. Soc. 1999. V. 146. P. 2139. https://doi.org/10.1149/1.1391904
  4. Kaloyeros A. E., Londergan A., Arkles B. Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt. US Pat. 6,346,477. 2002.
  5. Zaera F. // Coord. Chem. Rev. 2013. V. 257. P. 3177. https://doi.org/10.1016/j.ccr.2013.04.006
  6. Elliott S. D., Dey G., Maimaiti Y. // J. Chem. Phys. 2017. V. 146. P. 052822. https://doi.org/10.1063/1.4975085
  7. Smirnov Yu. M. // Russ. J. Phys. Chem. B. 2020. V. 14. № 2. P. 209. https://doi.org/10.1134/S1990793120020293
  8. Vasiliev A. A., Dzidziguri E. L., Efimov M. N. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 3. P. 381. https://doi.org/10.1134/S1990793121030313
  9. Vikulova M. A., Tsyganov A. R., Artyukhov D. I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1311. https://doi.org/10.1134/S199079312306009X
  10. Chizhik S.A., Gribov P.A., Kovalsky L.Yu. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 1. P.153. https://doi.org/10.1134/S1990793124010226
  11. Lammers D. // Semicond. Manuf. Des. Community. 2017. semimd.com/ blog/2017/12/21.
  12. Singer P. // Semicond. Des. Manuf. Community. 2018. http://semimd.com/blog/ tag/cobalt/
  13. Londergan A.R. Nuesca G., Goldberg C. et al. // J. Electrochem. Soc. 2001. V. 148. P. C21.
  14. Dorovskikh S. I., Hairullin R. R., Sysoev S. V. et al. // Surf. Eng. 2016. V. 32. P. 8. https://doi.org/10.1179/1743294414Y.0000000424
  15. Samal N., Chetry K. B., Rook K., Hayes A. et al. // J. Vac. Sci. Technol. B. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014. V. 32. 011206. https://doi.org/10.1116/1.4836455
  16. Georgi C., Hapke M., Thiel I., Hildebrandt A. et al. // Thin Solid Films. 2015. V. 578. P. 180. https://doi.org/10.1016/j.tsf.2015.01.052
  17. Ramos B. K., Saly M. J., Chabal Y. J. et al. // Coord. Chem. Rev. 2013. V. 257. P. 3271. https://doi.org/10.1016/j.ccr.2013.03/028
  18. Yang Y. , Fei H., Ruan G. , Tour D.M. // Adv. Mater. 2015. V. 27. № 20. P. 3175. https://doi.org/10.1002/adfm.201502479
  19. Alymov M.I., Rubtsov N.M., Zelensky V.A. et al. A method for producing ultrathin sheets of porous metals and alloys: Pat. RF 2819948 // 2024 B.I. 16. P. 45.
  20. Koryakin A.A., Kukushkin S.A., Osipov A.V. et al. // Phys. Solid State. 2022. V. 64. P. 113. https://doi.org/10.21883/pss.2022.01.52497.209
  21. Kukushkin S.A., Osipov A.V., Bessolov V.N. et al. // Phys. Solid State. 2017. V. 59. P. 674. https://doi.org/10.21883/ftt.2017.04.44266.287
  22. Sakalo T.V., Kukushkin S.A. // Appl. Surf. Sci. 1996. V. 92. P. 350. https://doi.org/10.1016/0169-4332(95)00254-5
  23. Zheng S., Zeng M., Cao H. et al. // Sci. China Mater. 2019. V. 62. P. 1087. https://doi.org/10.1007/s40843-019-9406-7
  24. Rubtsov N.M. Key Factors of Combustion. From Kinetics to Gas Dynamics. Springer International Publishing AG. 2017.ISBN: ISBN 978-3-319-45996-7.
  25. Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Mendeleev Commun. 2016. V. 26. P. 452.
  26. Diagrams of the state of double metal systems. Ed. by Lyakishev N. P. V. 2. Moscow: Mechanical engineering, 1997.
  27. Alymov M.I., Rubtsov N.M., Zelensky V.A. et al. A method for producing a porous metal, alloy or psEᵤdo-alloy: Pat. RF 2815844 // B.I. 2024. № 9. P. 30.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Morphology of a porous cobalt film obtained from Co oxalate deposited on a Si(100) surface: general view (a) and region (b) highlighted in Fig. 1a with a marker in the form of a circle, at higher magnification. When obtaining cobalt films, a saturated alcohol solution of the initial Co oxalate was diluted 10 times.

Жүктеу (350KB)
3. Fig. 2. Morphology of a porous cobalt film obtained from Co oxalate (a) deposited on an In/Si(100) surface, and the region (b) highlighted in Fig. 2a by a marker in the form of a circle, at higher magnification. When obtaining cobalt films, a saturated alcohol solution of the initial Co oxalate was diluted 5 times.

Жүктеу (562KB)
4. Fig. 3. Fragment of the Co–In–Si(100) sample. When obtaining cobalt films, the saturated alcohol solution of the initial Co oxalate was diluted 5 times.

Жүктеу (252KB)
5. Fig. 4. a – Morphological features of the cobalt film obtained using an optical microscope, the upper left corner shows the appearance of the Co–In–Si(100) sample; b – SEM image of the indium surface after heat treatment, deposited on a Si(100) substrate; c – SEM image of the cobalt film with a trace of a diamond indenter; d – enlarged image in the area of ​​the indenter trace.

Жүктеу (698KB)
6. Fig. 5. SEM image of the morphology of fragments of a thin porous cobalt film in the Co–Ga–Si(100) structure.

Жүктеу (313KB)
7. Fig. 6. Morphology of a porous cobalt film obtained from Co oxalate (a) deposited on a Ga/Si(100) surface; b – a fragment of the region marked with a marker in Fig. 6a in the form of a circle, at higher magnification.

Жүктеу (524KB)
8. Fig. 7. Metallic film Co – 10% Ga on a drop of gallium: a and b – different positions of the substrate.

Жүктеу (142KB)

© Russian Academy of Sciences, 2025