Reaction of hydroiodic acid with a chlorine atom in the temperature range of 298–366 K

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this study, the rate constant of the reaction between hydroiodic acid and a chlorine atom was measured using the resonance fluorescence (RF) method in a flow reactor within the temperature range of 298–366 K. Measurements were performed by detecting the RF of both chlorine atoms and iodine atoms, the latter being a product of this reaction. In both cases, similar expressions describing the temperature dependence of the rate constant were obtained. A possible explanation for the observed decrease in the reaction rate constant with increasing temperature in the reactor is proposed.

Texto integral

Acesso é fechado

Sobre autores

I. Larin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: eltrofimova@yandex.ru
Rússia, Moscow

G. Pronchev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: eltrofimova@yandex.ru
Rússia, Moscow

E. Trofimova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: eltrofimova@yandex.ru
Rússia, Moscow

Bibliografia

  1. Larin I.K. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 492. https://doi.org/10.1134/S1990793122030083
  2. Golyak I.S., Anfimov D.R., Vintaykin I.B. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 320. https://doi.org/10.1134/S1990793123020264
  3. Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 508. https://doi.org/10.1134/S1990793122030058
  4. Rodionov A.I., Rodionov I.D., Rodionova I.P. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1246. https://doi.org/10.1134/S1990793123050275
  5. Larin I.K., Belyakova T.I., Messineva N.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 510. https://doi.org/10.1134/S199079312302029X
  6. Larin I.K., Pronchev G.B., Trofimova E.M. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 830. https://doi.org/10.1134/S1990793124700209
  7. Davis D., Crawford J., Liu S. et al. // J. Geophys. Res. Atmos. 1996. V. 101. P. 2135. https://doi.org/10.1029/95JD02727
  8. Calvert J.G., Lindberg S.E. // Atmos. Environ. 2004. V. 38. № 30. P. 5105. https://doi.org/10.1016/j.atmosenv.2004.05.050
  9. Bloss W.J., Lee J.D., Johnson G.P. et al. // Geophys. Res. Lett. 2005. V. 32. № 6. L06814. https://doi.org/10.1029/2004GL022084
  10. Saiz-Lopez A., Plane J.M.C., Mahajan A.S. et al. // Atmos. Chem. Phys. 2008. V. 8. № 4. P. 887. https://doi.org/10.5194/acp-8-887-2008
  11. Saiz-Lopez A., Plane J.M.C., Baker A.R. et al. // Chem. Rev. 2012. V. 112. P. 1773. https://doi.org/10.1021/cr200029u
  12. Sherwen T., Evans M.J., Carpenter L.J. et al. // Atmos. Chem. Phys. 2016. V. 16. P. 1161. https://doi.org/10.5194/acp-16-1161-2016
  13. McFiggans G. // Nature. 2005. V. 433. № 7026. E13. https://doi.org/10.1038/nature03372
  14. Martino M., Mills G.P., Woetjen J. et al. // Geophys. Res. Lett. 2009. V. 36. № 1. L01609. https://doi.org/10.1029/2008GL036334
  15. Lai S.C., Williams J., Arnold S.R. et al. // Geophys. Res. Lett. 2011. V. 38. № 20. L20801. https://doi.org/10.1029/2011GL049035
  16. Cuevas C.A., Maffezzoli N., Corella J.P. et al. // Nat. Commun. 2018. V. 9. 1452. https://doi.org/10.1038/s41467-018-03756-1
  17. Carpenter L.J., MacDonald S.M., Shaw M.D. et al. // Nat. Geosci. 2013. V. 6. P. 108. https://doi.org/10.1038/ngeo1687
  18. Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2007. V. 48. № 1. P. 1. https://doi.org/10.1134/S0023158407010016
  19. Behnke W., Zetsch C. // J. Aerosol. Sci. 1989. V. 20. № 8. P. 1167. https://doi.org/10.1016/0021-8502(89)90788-X
  20. Larin I.K. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 244. https://doi.org/10.1134/S1990793123010074
  21. Larin I.K., Pronchev G.B., Trofimova E.M. // Izv. Atmos. Ocean. Phys. 2024. V. 60. P. 225. https://doi.org/10.1134/S0001433824700178
  22. Kikoin I.K. Tables of physical quantities. Мoscow: Atomizdat, 1976 [in Russian].
  23. Wodarczyk F.J., Moore C.B. // Chem. Phys. Lett. 1974. V. 26. № 4. P. 484. https://doi.org/10.1016/0009-2614(74)80396-9
  24. Mei C.C., Moore C.B. // J. Chem. Phys. 1977. V. 67. № 9. P. 3936. https://doi.org/10.1063/1.435409
  25. Yuan J., Misra A., Goumri A. et al. // J. Phys. Chem. A. 2004. V. 108. № 33. P. 6857. https://doi.org/10.1021/jp047411c
  26. Sayin H., McKee M.L. // J. Phys. Chem. A. 2004. V. 108. № 37. P. 7613. https://doi.org/10.1021/jp0479116
  27. Nakano J., Enamy S., Nakamichi S. et al. // J. Phys. Chem. A. 2003. V. 107. № 33. P. 6381. https://doi.org/10.1021/jp0345147
  28. Arsene C., Barnes I., Becker K.H. et al. // Int. J. Chem. Kinet. 2005. V. 37. P. 66. https://doi.org/10.1002/kin.20051
  29. Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2003. V. 44. № 2. P. 202. https://doi.org/10.1134/s002315841003003
  30. Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2010. V. 51. № 3. P. 348. https://doi.org/10.1134/S0023158410030031
  31. Larin I.K., Spasskii A.I., Trofimova E.M. // Izv. RAN. Energetika. 2012. № 3. P. 44.
  32. Larin I.K., Spasskii A.I., Trofimova E.M. // Russ. J. Phys. Chem. B. 2020. V. 14. № 5. P. 781. https://doi.org/10.1134/S1990793120050231

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Flow reactor diagram.

Baixar (34KB)
3. Fig. 2. Dependence of the logarithm of the ratio of RF signals of chlorine atoms, ln(J₀/J), on the concentration of [HI] in reaction (1). Temperature T = 365 K, pressure P = 0.8 Torr, reaction time t = 0.0108 s.

Baixar (15KB)
4. Fig. 3. Temperature dependence of the reaction rate constant (1), obtained by measuring the RF signal of Cl atoms.

Baixar (20KB)
5. Fig. 4. Dependence of the RF signal of iodine atoms on the [HI] concentration. Temperature T = 365 K, pressure P = 1.0 Torr, reaction time t = 0.0091 s.

Baixar (20KB)
6. Fig. 5. Dependence of the logarithm of the ratio obtained from the RF signals of iodine atoms ln[Jmax/(Jmax – J)] on the [HI] concentration. Temperature T = 365 K, pressure P = 1.1 Torr, reaction time t = 0.0088 s.

Baixar (18KB)
7. Fig. 6. Temperature dependence of the reaction rate constant (1), obtained by measuring the RF signal of I atoms.

Baixar (21KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025