Reaction of hydroiodic acid with a chlorine atom in the temperature range of 298–366 K
- Autores: Larin I.K.1, Pronchev G.B.1, Trofimova E.M.1
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Edição: Volume 44, Nº 5 (2025)
- Páginas: 49-55
- Seção: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://hum-ecol.ru/0207-401X/article/view/683913
- DOI: https://doi.org/10.31857/S0207401X25050066
- ID: 683913
Citar
Resumo
In this study, the rate constant of the reaction between hydroiodic acid and a chlorine atom was measured using the resonance fluorescence (RF) method in a flow reactor within the temperature range of 298–366 K. Measurements were performed by detecting the RF of both chlorine atoms and iodine atoms, the latter being a product of this reaction. In both cases, similar expressions describing the temperature dependence of the rate constant were obtained. A possible explanation for the observed decrease in the reaction rate constant with increasing temperature in the reactor is proposed.
Palavras-chave
Texto integral

Sobre autores
I. Larin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Rússia, Moscow
G. Pronchev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Rússia, Moscow
E. Trofimova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: eltrofimova@yandex.ru
Rússia, Moscow
Bibliografia
- Larin I.K. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 492. https://doi.org/10.1134/S1990793122030083
- Golyak I.S., Anfimov D.R., Vintaykin I.B. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 320. https://doi.org/10.1134/S1990793123020264
- Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 508. https://doi.org/10.1134/S1990793122030058
- Rodionov A.I., Rodionov I.D., Rodionova I.P. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1246. https://doi.org/10.1134/S1990793123050275
- Larin I.K., Belyakova T.I., Messineva N.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 510. https://doi.org/10.1134/S199079312302029X
- Larin I.K., Pronchev G.B., Trofimova E.M. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 830. https://doi.org/10.1134/S1990793124700209
- Davis D., Crawford J., Liu S. et al. // J. Geophys. Res. Atmos. 1996. V. 101. P. 2135. https://doi.org/10.1029/95JD02727
- Calvert J.G., Lindberg S.E. // Atmos. Environ. 2004. V. 38. № 30. P. 5105. https://doi.org/10.1016/j.atmosenv.2004.05.050
- Bloss W.J., Lee J.D., Johnson G.P. et al. // Geophys. Res. Lett. 2005. V. 32. № 6. L06814. https://doi.org/10.1029/2004GL022084
- Saiz-Lopez A., Plane J.M.C., Mahajan A.S. et al. // Atmos. Chem. Phys. 2008. V. 8. № 4. P. 887. https://doi.org/10.5194/acp-8-887-2008
- Saiz-Lopez A., Plane J.M.C., Baker A.R. et al. // Chem. Rev. 2012. V. 112. P. 1773. https://doi.org/10.1021/cr200029u
- Sherwen T., Evans M.J., Carpenter L.J. et al. // Atmos. Chem. Phys. 2016. V. 16. P. 1161. https://doi.org/10.5194/acp-16-1161-2016
- McFiggans G. // Nature. 2005. V. 433. № 7026. E13. https://doi.org/10.1038/nature03372
- Martino M., Mills G.P., Woetjen J. et al. // Geophys. Res. Lett. 2009. V. 36. № 1. L01609. https://doi.org/10.1029/2008GL036334
- Lai S.C., Williams J., Arnold S.R. et al. // Geophys. Res. Lett. 2011. V. 38. № 20. L20801. https://doi.org/10.1029/2011GL049035
- Cuevas C.A., Maffezzoli N., Corella J.P. et al. // Nat. Commun. 2018. V. 9. 1452. https://doi.org/10.1038/s41467-018-03756-1
- Carpenter L.J., MacDonald S.M., Shaw M.D. et al. // Nat. Geosci. 2013. V. 6. P. 108. https://doi.org/10.1038/ngeo1687
- Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2007. V. 48. № 1. P. 1. https://doi.org/10.1134/S0023158407010016
- Behnke W., Zetsch C. // J. Aerosol. Sci. 1989. V. 20. № 8. P. 1167. https://doi.org/10.1016/0021-8502(89)90788-X
- Larin I.K. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 244. https://doi.org/10.1134/S1990793123010074
- Larin I.K., Pronchev G.B., Trofimova E.M. // Izv. Atmos. Ocean. Phys. 2024. V. 60. P. 225. https://doi.org/10.1134/S0001433824700178
- Kikoin I.K. Tables of physical quantities. Мoscow: Atomizdat, 1976 [in Russian].
- Wodarczyk F.J., Moore C.B. // Chem. Phys. Lett. 1974. V. 26. № 4. P. 484. https://doi.org/10.1016/0009-2614(74)80396-9
- Mei C.C., Moore C.B. // J. Chem. Phys. 1977. V. 67. № 9. P. 3936. https://doi.org/10.1063/1.435409
- Yuan J., Misra A., Goumri A. et al. // J. Phys. Chem. A. 2004. V. 108. № 33. P. 6857. https://doi.org/10.1021/jp047411c
- Sayin H., McKee M.L. // J. Phys. Chem. A. 2004. V. 108. № 37. P. 7613. https://doi.org/10.1021/jp0479116
- Nakano J., Enamy S., Nakamichi S. et al. // J. Phys. Chem. A. 2003. V. 107. № 33. P. 6381. https://doi.org/10.1021/jp0345147
- Arsene C., Barnes I., Becker K.H. et al. // Int. J. Chem. Kinet. 2005. V. 37. P. 66. https://doi.org/10.1002/kin.20051
- Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2003. V. 44. № 2. P. 202. https://doi.org/10.1134/s002315841003003
- Larin I.K., Spasskii A.I., Trofimova E.M. et al. // Kinet Catal. 2010. V. 51. № 3. P. 348. https://doi.org/10.1134/S0023158410030031
- Larin I.K., Spasskii A.I., Trofimova E.M. // Izv. RAN. Energetika. 2012. № 3. P. 44.
- Larin I.K., Spasskii A.I., Trofimova E.M. // Russ. J. Phys. Chem. B. 2020. V. 14. № 5. P. 781. https://doi.org/10.1134/S1990793120050231
Arquivos suplementares
