Application of dual-wavelength digital holographic interferometry for optical nondestructive wear testing of protective elements of the spherical tokamak Globus-M2

Capa

Citar

Texto integral

Resumo

The possibility of using the method of dual-wavelength digital holographic interferometry to assess the wear of protective elements of the Globus-M2 spherical tokamak after working plasma discharges is demonstrated. At this stage of the work, the protective elements were removed from the tokamak discharge chamber and used as samples in the holographic setup. A diagram of a holographic interferometer for recording primary holographic images is presented, in which control of the radiation wavelength recording and monitoring systems is carried out through a hardware and software complex in real time. The results of measurements of the shape of tokamak elements are presented. It is shown that when the difference in wavelengths changes, the sensitivity of the measurement method changes, and in the proposed configuration of the optical scheme it is possible to determine the minimum value of the shape change at a level of 10–30 μm. At the same time, the error in determining the phase difference, by which the surface profile is assessed, in the digital method can reach about 2π/40.

Texto integral

Acesso é fechado

Sobre autores

I. Alekseenko

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: IAlekseenko@kantiana.ru
Rússia, Kaliningrad, 236041

A. Kozhevnikova

Immanuel Kant Baltic Federal University

Email: IAlekseenko@kantiana.ru
Rússia, Kaliningrad, 236041

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Rússia, St. Petersburg, 194021

D. Elets

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Rússia, St. Petersburg, 194021

O. Medvedev

Ioffe Institute, Russian Academy of Sciences

Email: IAlekseenko@kantiana.ru
Rússia, St. Petersburg, 194021

Bibliografia

  1. De Temmerman G., Hirai T., Pitts R.A. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 044018. doi: 10.1088/1361-6587/aaaf62.
  2. Schweer B., Huber A., Sergienko G., Philipps V., Irrek F., Esser H.G., Samm U., Kempenaars M., Stamp M., Gowers C., Richards D. // J. Nucl. Mater. 2005. V. 337–339. P. 570. doi: 10.1016/j.jnucmat.2004.10.156.
  3. Pintsuk G., Bobin-Vastra I., Constans S., Gavila P., Rödig M., Riccardi B. // Fusion Eng. Des. 2013. V. 88. P. 1858. doi: 10.1016/j.fusengdes.2013.05.091.
  4. Кукушкин А.С., Пшенов А.А. // Физика плазмы. 2021. Т. 47. С. 1123.
  5. Pedrini G., Alekseenko I., Jagannathan G., Kempenaars M., Vayakis G., Osten W. // Applied Optics. 2019. V. 8(5). P. A147.
  6. Belashov A.V., Zhikhoreva A.A., Semenova I.V. // Applied Sciences. 2022. V. 12. P. 1687.
  7. Kozhevnikova A.M., Alekseenko I.V., Schitz D.V. // Applied Optics. 2023. Т. 62. С. 7881.
  8. Friesem A.A., Levy U. // Applied Optics. 1976. V. 15. P. 3009.
  9. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2(4). P. 403.
  10. Schnars U., Jueptner W. Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Berlin: Springer, 2005.
  11. Takeda M., Ina H., Kobayashi S. // J. Optical Soc. America. 1982. V. 72.1. P. 156.
  12. Kreis T. Handbook of holographic interferometry: optical and digital methods. N.Y.: John Wiley & Sons, 2006.
  13. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. // Light: Advanced Manufacturing. 2021. V. 2. P. 29.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the digital holographic interferometer: 1 – pump laser; 2 – tunable laser; 3 – beam splitter; 4 – collimator; 5 – optical wedge; 6 – object; 7 – collecting lens; 8 – diaphragm; 9 – beam splitter; 10, 11 – mirror; 12 – collecting lens/microlens; 13 – CCD camera.

Baixar (16KB)
3. Fig. 2. Algorithm for reconstructing the phase difference in two-wavelength digital holographic interferometry.

Baixar (25KB)
4. Fig. 3. Test object (step structure).

Baixar (18KB)
5. Fig. 4. Results of measuring the shape of the test object: interferogram corresponding to the synthesized wavelength Λ = 7.56 mm (a); reconstructed profile of the steps of the test object representation of the surface of the object (b).

Baixar (33KB)
6. Fig. 5. Results of measuring the shape of OPE-1: image of an element with revealed surface defects (a); interferogram corresponding to the synthesized wavelength Λ = 400 μm (b); three-dimensional reconstructed representation of the object’s surface (c); two-dimensional distribution of the surface (d).

Baixar (59KB)
7. Fig. 6. Results of measuring the OPE-1 profile: along line 1 (a), along line 2 (b).

Baixar (28KB)
8. Fig. 7. Results of the reconstruction of the OPE-2 shape: image of an element with revealed surface defects (a); interferogram corresponding to the synthesized wave length Λ = 1.48 mm (b); three-dimensional reconstructed representation of the object’s surface (c); two-dimensional distribution of the surface (d).

Baixar (57KB)
9. Fig. 8. Results of measuring the OPE-2 profile: along line 1 (a), along line 2 (b)

Baixar (29KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024