Photoinduced electron transfer in deferiprone chelate complexes with nontransition metal ions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The formation and photo degradation of deferiprone chelate complexes with calcium and zinc ions have been studied by CIDNP and LFP methods. It was established that deferiprone in complexes undergoes rapid decomposition under the UV irradiation. Radical intermediates of deferiprone have been registered, and it was shown that the quantum yield of deferiprone photo degradation in the complex with zinc increases by 6.4 times.

Sobre autores

V. Timoshnikov

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090, Russia

O. Selyutina

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090, Russia

V. Grivin

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090, Russia

E. Glebov

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk, 630090, Russia

N. Polyakov

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences

Email: polyakov@kinetics.nsc.ru
Novosibirsk, 630090, Russia

Bibliografia

  1. . Tonnesen H.H. Photostability of drugs and drug formulations. Boka Raton: CRC Press, 2004. 448 p.
  2. Kim W.B., Shelley A.J., Novice K. et al. // J. Amer. Acad. Dermatol. 2004. V. 69. No. 6. P. 1069.
  3. Di Bartolomeo L., Irrera N., Campo G.M. et al. // Front. Allergy. 2022. V. 3. Art. No. 876695.
  4. Denisov E.T., Afanas’ev I.B. Oxidation and antioxidants in organic chemistry and biology. Abingdon: Taylor & Francis, 2005. 981 p.
  5. Selyutina O.Y., Timoshnikov V.A., Polyakov N.E., Kontoghiorghes G.J. // Molecules. 2023. V. 28. No. 10. Art. No. 4210.
  6. Selyutina O.Y., Mastova A.V., Polyakov N.E. // Membranes. 2023. V. 13. No. 1. Art. No. 61.
  7. Mastova A.V., Selyutina O.Yu., Evseenko V.I., Polyakov N.E. // Membranes. 2022. V. 12. No. 3. Art. No. 251.
  8. Selyutina O.Y., Babenko S.V., Slepneva I.A. et al. // Pharmaceuticals. 2023. V. 16. No. 8. Art. No. 1116.
  9. Kontoghiorghes G.J. // Front. Biosci. 2009. V. 1. No. 1. P. 161.
  10. Kontoghiorghes G.J. The design of orally active iron chelators for the treatment of thalassaemia. PhD thesis. Colchester: University of Essex UK, 1982.
  11. Timoshnikov V.A., Kobzeva T.V., Polyakov N.E., Kontoghiorghes G.J. // Int. J. Mol. Sci. 2020. V. 21. No. 11. Art. No. 3967.
  12. Timoshnikov V.A., Klimentiev V.I., Polyakov N.E., Kontoghiorghes G.J. // J. Photochem. Photobiol. A Chem. 2014. V. 289. P. 14.
  13. Timoshnikov V.A., Kobzeva T.V., Selyutina O.Yu. et al. // J. Biol. Inorg. Chem. 2019. V. 24. No. 3. P. 331.
  14. Asmari M., Michalcovа? L., Alhazmi H.A. et al. // Microchem. J. 2018. V. 137. P. 98.
  15. Kaviani S., Izadyar M., Housaindokht M.R. // Comput. Biol. Chem. 2020. V. 86. Art. No. 107267.
  16. Faust B.C., Zepp R.G. // Environ. Sci. Technol. 1993. V. 27. No. 12. P. 2517.
  17. Sima J., Makа?novа? J. // Coord. Chem. Rev. 1997. V. 160. P. 161.
  18. Pozdnyakov I.P., Kel O.V., Plyusnin V.F. et al. // J. Phys. Chem. A. 2008. V. 112. No. 36. P. 8316.
  19. Glebov E.M., Pozdnyakov I.P., Grivin V.P. et al. // Photochem. Photobiol. Sci. 2011. V. 10. No. 3. P. 425.
  20. Pozdnyakov I.P., Plyusnin V.F., Grivin V.P., Oliveros E. // J. Photochem. Photobiol. A Chem. 2015. V. 307–308. P. 9.
  21. Salikhov K.M., Molin Y.N., Sagdeev R.Z., Buchachenko A.L. Spin polarization and magnetic effects in radical reactions. Amsterdam: Elsevier, 1984. 419 p.
  22. Sosnin E.A., Oppenlander T., Tarasenko V.F. // J. Photochem. Photobiol. C. Photochem. 2006. V. 7. No. 4. P. 145.
  23. Pozdnyakov I.P., Plyusnin V.F., Grivin V.P. et al. // J. Photochem. Photobiol. A. Chem. 2006. V. 182, No. 1. P. 75.
  24. Markova I.D., Polyakov N.E., Selyutina O.Yu. et al. // Zeitschrift. Phys. Chemie. 2017. V. 231. No. 2. P. 369.
  25. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. No. 1–3. P. 51.
  26. Pshenichnyuk S.A., Asfandiarov N.L., Markova A.V. et al. // J. Chem. Phys. 2023. V. 159. No. 21. Art. No. 214305.
  27. Kaptein R. // J. Chem. Soc. D 1971. No. 14. P. 732.
  28. Morozova O.B., Ivanov K.L., Kiryutin A.S. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 6619.
  29. Салихов К.М. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 659; Salikhov K.M. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 547.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025