Application of printing technologies for forming functional copoly(arylene ether ketone) films for flexible electronics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions for the formation of copoly(arylene ether ketones) films by layer-by-layer deposition were studied. The possibility of obtaining films with a minimum thickness of up to 1 µm, by the layer-bylayer deposition method, possessing electroactivity and sensitivity to changes in environmental conditions: humidity and temperature, was established. The results obtained can be used to develop additive printing technology for flexible electronics.

About the authors

A. F. Galiev

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Email: azat-red@ya.ru
Ufa, 450054 Russia; Ufa, 450008 Russia

M. S. Ishmukhametov

Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450008 Russia

N. S. Bulankin

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450054 Russia; Ufa, 450008 Russia

V. R. Karimov

Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450008 Russia

A. A. Lachinov

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450054 Russia

References

  1. Toto E., Lambertini L., Laurenzi S. et al. // Polymers. 2024. V. 16. No. 3. P. 382.
  2. Cho C.J., Chung P.Y., Tsai Y.W. et al. // Nanomaterials. 2023. V. 13. No. 16. P. 2375.
  3. Tian H., Li C., Hao H. et al. // J. Biomater. Sci. Polym. Ed. 2024. P. 1.
  4. Liu T. // Appl. Comp. Eng. 2024. V. 70. P. 261.
  5. Satchanska G., Davidova S., Petrov P.D. // Polymers. 2024. V. 16. No. 8. P. 1159.
  6. Karunanidhi C., Natarajan S. // J. Mech. Behav. Biomed. Mater. 2024. V. 149. Art. No. 106237.
  7. Шапошникова В.В., Салазкин С.Н. // Росс. хим. журн. 2023. Т. 67. № 4. C. 37; Shaposhnikova V.V., Salazkin S.N. // Russ. J. Gen. Chem. 2024. V. 94. No. 6. P. 1564.
  8. Гилева Н.Г. Носовская И.И., Фатыхов А.А. и др. // Журн. орг. химии. 2019. Т. 55. № 2. С. 221; Gileva N.G., Nosovskaya I.I., Fatykhov A.A. et al. // Russ. J. Org. Chem. 2019. V. 55. No. 2. P. 174.
  9. Lachinov A.N., Karamov D.D., Galiev A.F. et al. // Polymers. 2023. V. 15. No. 4. P. 928.
  10. Чеботарева А.Б., Кост Т.Н., Лачинов А.Н. и др. // Изв. УНЦ РАН. 2023. № 1. С. 57.
  11. Чеботарева А.Б., Кост Т.Н., Шапошникова В.В. и др. // Росс. хим. журн. 2024. Т. 68. № 1. С. 40.
  12. Галиев А.Ф., Лачинов А.Н., Корнилов В.М. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 623; Galiev A.F., Lachinov A.N., Kornilov V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 512.
  13. Максимов А.В., Максимова О.Г., Осипов С.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1819; Maximov A.V., Maksimova O.G., Osipov S.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1576.
  14. Байбулова Г.Ш. Лачинов А.Н., Гадиев Р.М. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 688.
  15. Карамов Д.Д., Лачинов А.Н., Корнилов В.М. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 636; Karamov D.D., Lachinov A.N., Kornilov V.M. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 524.
  16. Юсупов А.Р., Гадиев Р.М., Лачинов А.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 682; Yusupov A.R., Gadiev R.M., Lachinov A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 566.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences