Application of printing technologies for forming functional copoly(arylene ether ketone) films for flexible electronics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The conditions for the formation of copoly(arylene ether ketones) films by layer-by-layer deposition were studied. The possibility of obtaining films with a minimum thickness of up to 1 µm, by the layer-bylayer deposition method, possessing electroactivity and sensitivity to changes in environmental conditions: humidity and temperature, was established. The results obtained can be used to develop additive printing technology for flexible electronics.

Sobre autores

A. Galiev

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Email: azat-red@ya.ru
Ufa, 450054 Russia; Ufa, 450008 Russia

M. Ishmukhametov

Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450008 Russia

N. Bulankin

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450054 Russia; Ufa, 450008 Russia

V. Karimov

Institute of Physics, Mathematics, Digital and Nanotechnologies, M. Akmulla Bashkir State Pedagogical University

Ufa, 450008 Russia

A. Lachinov

nstitute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450054 Russia

Bibliografia

  1. Toto E., Lambertini L., Laurenzi S. et al. // Polymers. 2024. V. 16. No. 3. P. 382.
  2. Cho C.J., Chung P.Y., Tsai Y.W. et al. // Nanomaterials. 2023. V. 13. No. 16. P. 2375.
  3. Tian H., Li C., Hao H. et al. // J. Biomater. Sci. Polym. Ed. 2024. P. 1.
  4. Liu T. // Appl. Comp. Eng. 2024. V. 70. P. 261.
  5. Satchanska G., Davidova S., Petrov P.D. // Polymers. 2024. V. 16. No. 8. P. 1159.
  6. Karunanidhi C., Natarajan S. // J. Mech. Behav. Biomed. Mater. 2024. V. 149. Art. No. 106237.
  7. Шапошникова В.В., Салазкин С.Н. // Росс. хим. журн. 2023. Т. 67. № 4. C. 37; Shaposhnikova V.V., Salazkin S.N. // Russ. J. Gen. Chem. 2024. V. 94. No. 6. P. 1564.
  8. Гилева Н.Г. Носовская И.И., Фатыхов А.А. и др. // Журн. орг. химии. 2019. Т. 55. № 2. С. 221; Gileva N.G., Nosovskaya I.I., Fatykhov A.A. et al. // Russ. J. Org. Chem. 2019. V. 55. No. 2. P. 174.
  9. Lachinov A.N., Karamov D.D., Galiev A.F. et al. // Polymers. 2023. V. 15. No. 4. P. 928.
  10. Чеботарева А.Б., Кост Т.Н., Лачинов А.Н. и др. // Изв. УНЦ РАН. 2023. № 1. С. 57.
  11. Чеботарева А.Б., Кост Т.Н., Шапошникова В.В. и др. // Росс. хим. журн. 2024. Т. 68. № 1. С. 40.
  12. Галиев А.Ф., Лачинов А.Н., Корнилов В.М. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 623; Galiev A.F., Lachinov A.N., Kornilov V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 512.
  13. Максимов А.В., Максимова О.Г., Осипов С.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1819; Maximov A.V., Maksimova O.G., Osipov S.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1576.
  14. Байбулова Г.Ш. Лачинов А.Н., Гадиев Р.М. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 688.
  15. Карамов Д.Д., Лачинов А.Н., Корнилов В.М. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 636; Karamov D.D., Lachinov A.N., Kornilov V.M. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 524.
  16. Юсупов А.Р., Гадиев Р.М., Лачинов А.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 682; Yusupov A.R., Gadiev R.M., Lachinov A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 566.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025