Investigation of the corrosion resistance of Ti40.0Ni51.0 alloy in various structural states

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of the corrosion resistance of Ti49.0Ni51.0 alloy in the initial coarse-grained state and in the state after preliminary aging was carried out. 0.9% NaCl, Ringer’s solution, and Hanks’ solution were chosen as corrosive media that mimic the biological environment of the body. We obtained that corrosion occurs in all states studied with the formation of pitting and the release of corrosion products on the surface.

About the authors

E. I. Iskhakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Email: elmira.iskhakova.74@mail.ru
Ufa, 450075 Russia; Ufa, 450076 Russia

A. A. Churakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450075 Russia; Ufa, 450076 Russia

References

  1. Berger-Gorbet M., Broxup B., Rivard C., Yahia L. // J. Biomed. Mater. Res. 1996. V. 32. No. 2. P. 243.
  2. Elstrodt J.A., Veldhuizen A.G., Horn N.V. // Eur. Spine J. 2002. V. 11. No. 2. P. 100.
  3. Устинская T.H., Томашов Н.Д., Лубник Е.Н. // Электрохимия. 1987. Т. 23. С. 254.
  4. Коссый Г.Г., Трусов Г.Н., Гончаренко Б.А., Михеев В.С. // Защита металлов. 1978. Т. 14. № 6. С. 662.
  5. Чуракова А.А., Каюмова Э.М. // Наноиндустрия. 2023. Т 16. № 3–4. С. 208.
  6. Урбан В.И., Рубаник В.В., Рубаник мл. В.В. и др. // Физикохим. поверх. защ. матер. 2023. Т. 59. № 4. C. 444; Urban V.I., Rubanik V.V., Rubanik Jr.V.V. et al. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. No. 4. P. 717.
  7. Sanders J.O., Sanders A.E., More R. et al. // Spine. Part. A. 1993. V. 18. P. 1640.
  8. Duerig Т., Pelton А., Stockel D. // Mater. Sci. Eng. Part. A. 1999. V. 273. P. 149.
  9. Veiga C., Davim J.P., Loureiro A.J.R. // Rev. Adv. Mater. Sci. 2012. V. 32. P. 1434.
  10. Filip P., Lausmaa J., Musialek J., Mazanec K. // Biomaterials. 2001. V. 22. P. 2131.
  11. Milosev I., Kapun B. // Mater. Sci. Eng. 2012. V. 32. P. 1068.
  12. Шурыгина Н.А., Глезер А.М., Дьяконов Д.Л., Сундеев Р.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 997; Shurygina N.A., Glezer A.M., Diakonov D.L., Sundeev R.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 771.
  13. Semin V.O., D’yachenko F.A., Erkovich A.V. et al. // Mater. Character. B. 2023. V. 206. Art. No. 113457.
  14. Karelin R., Komarov V., Khmelevskaya I. et al. // Mater. Sci. Eng. A. 2023. V. 872. Art. No. 144960.
  15. Semin V.O., Ostapenko M.G., Meisner S.N. et al. // Materialia. 2024. V. 34. Art. No. 102043.
  16. Huang H.H., Chiu Y.H., Lee T.H. et al. // Biomaterials. 2003. V. 24. P. 3585.
  17. Gitlitz P.H., Sunderman F.W., Goldblatt P.J. // Toxicol. Appl. Pharmacol. 1975. V. 34. P. 430.
  18. Pereira M.C., Pereira M.L., Sousa J.P. // Biomed. Mater. Res. 1998. V. 40. P. 40.
  19. Рыклина Е.П. // Матер. симпоз. «Перспективные материалы и технологии» (Брест, 2019). С. 411.
  20. Ryklina E., Murygin S., Komarov V. et al. // Metals. 2023. V. 13. No. 8. P. 1428.
  21. Ryklina E.P., Polyakova K.A., Resnina N.N. // Shape. Mem. Superelasticity. 2022. V. 8. P. 200.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences