Photophysical characteristics of solutions of divalent europium dihalides EuX2 (X = Cl, Br). Aluminum alkyls as enhancers of luminescence of the Eu2+ ion
- Autores: Bulgakov R.G.1, Galimov D.I.2, Yakupova S.M.2, Vasilyuk K.S.2
-
Afiliações:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 453–457
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://hum-ecol.ru/0367-6765/article/view/686028
- DOI: https://doi.org/10.31857/S0367676525030201
- EDN: https://elibrary.ru/GCNDZJ
- ID: 686028
Citar
Resumo
The photophysical properties of solutions of EuCl2 and EuBr2dihalides in tetrahydrofuran have been studied in detail for the first time. Absorption, photoluminescence (4f65d1 → 4f7 transition) and photoluminescence excitation spectra as well as photoluminescence yields and lifetime of excited Eu2+* ions were measured. The effect of increasing the luminescence intensity of the Eu2+ ion in the presence of aluminium alkyls was discovered to be due to the rigid structure of the four-centre complex formed by the interaction of EuCl2 and EuBr2 with aluminium alkyls.
Palavras-chave
Sobre autores
R. Bulgakov
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450054 Russia
D. Galimov
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
S. Yakupova
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: eliseevasm@yandex.ru
Ufa, 450075 Russia
K. Vasilyuk
Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Bibliografia
- Ronda C. // In: Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier, 2001. P. 8026.
- Qiao J., Zhou G., Zhou Y. et al. // Nature Commun. 2019. V. 10. P. 5267.
- Rao R.P., Devine D.J. // J. Luminescence. 2000. V. 87–89. P. 1260.
- Alekhin M.S., Khodyuk I.V., de Haas J.T.M. et al. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 665.
- Kido J., Okamoto Y. // Chem. Rev. 2002. V. 102. P. 2357.
- Кузяев Д.М., Румянцев Р.В., Фукин Г.К., Бочкарев М.Н. // Изв. АН. Сер. хим. 2014. № 4. С. 848; Kuzyaev D.M., Rumyantsev R.V., Fukin G.K., Bochkarev M.N. // Russ. Chem. Bull. 2014. V. 63. No. 4. P. 848.
- Shipley C.P., Capecchi S., Salata O.V. et al. // Adv. Mater. 1999. V. 11. P. 533.
- Li J., Wang L., Zhao Z. et al. // Nature Commun. 2020. V. 11. P. 5218.
- Galimov D.I., Bulgakov R.G. et al.// J. Photochem. Photobiol. A. Chem. 2021. V. 418. Art. No. 113430.
- Ekanger L.A., Allen M.J., Shen Y. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14398.
- Basal L.A., Allen M.J. // Front. Chem. 2018. V. 6. P. 1.
- Blasse G., Grabmaier B.C. Luminescent Materials. Springer, 1994.
- Yen W.M., Yamamoto H., Shionoya S. Phosphor Handbook, Boca Raton: CRC Press, 2007.
- Terraschke H., Wickleder C. // Chem. Rev. 2015. V. 115. P. 11352.
- Jiang J., Higashiyama N., Adachi G. et al. // Coord. Chem. Rev. 1998. V. 170. P. 1.
- Garcia J., Allen M.J. // Eur. J. Inorg. Chem. 2012. V. 29. P. 4550.
- Jenks T.C., Allen M.J. Divalent Lanthanide Luminescence in Solution, Modern Applications of Lanthanide Luminescence. Springer Series on Fluorescence. Springer, 2021.
- Булгаков Р.Г., Якупова С.М., Галимов Д.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 626; Bulgakov R.G., Yakupova S.M., Galimov D.I. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 515.
- Jenks T.C., Bailey M.D., Allen M.J. et al. // Chem. Comm. 2018. V. 54. P. 4545.
- Basal L.A., Kajjam A.B., Allen M.J. et al. // Inorg. Chem. 2020. V. 59. No 14. P. 9476.
- Zhuravlev K.P., Vologzhanina A.V., Kudryashova V.A. et al. // Polyhedron. 2013. V. 56. P. 109.
- Yang J.H., Tsutsui M., Chen Z. et al. // Macromolecules. 1982. V. 15. No. 2. P. 230.
- Evans W.J., Champagne T.M. // Organometallics. 2005. V. 24. P. 570.
- Бочкарев М.Н., Калинина Г.С., Захаров Л.Н. и др. Органические производные редкоземельных элементов. М.: Наука, 1989. С. 232.
- Толстиков Г.А., Джемилев У.М., Толстиков А.Г. Алюминийорганические соединения в органическом синтезе. Новосибирск: Гео, 2009. 645 c.
- Przibram K. // Nature. 1935. V. 135. P. 100.
- Butement F.D.S. // J. Chem. Soc. Faraday Trans. 1948. V. 309. P. 617.
- Rogers E., Dorenbos P., de Haas J.T.M. et al. // J. Phys. Cond. Matter. 2012. V. 24. P. 275502.
- Galimov D.I., Bulgakov R.G. // Luminescence. 2019. V. 34. P. 127.
- Bulgakov R.G., Kazakov V.P., Korobeinikova V.N. // Opt. Spectrosc. 1973. V. 35. P. 497.
- Kamenskaya A.N., Mikheev N.B., Kholmogorova N.P. // Zhurn. Neorg. Khim. 1983. V. 28. P. 2499.
- Okaue Y., Isobe T. // Inorg. Chim. Acta. 1988.V. 144. P. 143.
- Maity S., Prasad E. // J. Photochem. Photobiol. A. Chem. 2014. V. 274. P. 64.
- Galimov D.I., Yakupova S.M., Bulgakov R.G. // Luminescence. 2018. V. 33. P. 1365.
- Булгаков Р.Г., Кулешов С.П., Махмутов А.Р. // Изв. АН. Сер. хим. 2007. № 3. C. 429; Bulgakov R.G., Kuleschov S.P., Makhmutov A.R. // Bull. Russ. Acad. Sci. Chem. 2007. V. 56. No. 3. P. 443.
- Булгаков Р.Г., Кулешов С.П., Махмутов А.Р. // Изв. АН СССР. Сер. хим. 1994. № 9. C. 1682.
- Булгаков Р.Г., Кулешов С.П., Джемилев У.М. и др. // Кинетика и катализ. 2003. Т. 44. № 5. С. 783.
- Золин В.Ф., Коренева Л.Г. Редкоземельный зонд в химии и биологии. М.: Наука, 1980. С. 349.
- DonTilley T., Andersen R.A., Zalkin A. // Inorg. Chem. 1983. V. 22. P. 856.
Arquivos suplementares
