Measurement of nematic liquid crystals anchoring energy under crossed magnetic and electric fields
- Autores: Khazimullin M.V.1, Lebedev Y.A.1, Khoroshavin K.S.1, Makarov D.V.2
-
Afiliações:
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
- Perm State University
- Edição: Volume 89, Nº 3 (2025)
- Páginas: 442–446
- Seção: Electronic, Spin and Quantum Processes in Molecular and Crystalline Systems
- URL: https://hum-ecol.ru/0367-6765/article/view/686026
- DOI: https://doi.org/10.31857/S0367676525030181
- EDN: https://elibrary.ru/GCAZUU
- ID: 686026
Citar
Resumo
A method for determining the anchoring energy of nematic liquid crystals to a substrate based on the measurement of the Fredericksz threshold in crossed destabilizing magnetic and electric fields is proposed.
Palavras-chave
Sobre autores
M. Khazimullin
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
Email: maximhk@gmail.com
Ufa, 450075 Russia
Yu. Lebedev
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
Khoroshavin Khoroshavin
Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of SciencesUfa, 450075 Russia
D. Makarov
Perm State UniversityPerm, 614068 Russia
Bibliografia
- De Gennes P.-G., Prost J. The physics of liquid crystals. Oxford Universal Press, 1993. 596 p.
- Coles H., Morris S. // Nature Photon. 2010. V. 4. P. 676.
- Wee D., Hwang S.H., Song Y.S., Youn J.R. // Soft Matter. 2016. V. 12. P. 3868.
- Humar M., Ravnik M., Pajk S., Musevic I. // Nature Photon. 2009. V. 3. P. 595.
- Huh J.-W., Yu B.-H., Teo J. et al. // Mol. Cryst. Liq. Cryst. 2017. V. 644. P. 20.
- Комяк К.Г., Кабанова О.С., Рушнова И.И. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 1. С. 10; Komyak K.G., Kabanova O.S., Rushnova I.I. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1496.
- Yang Y.Q., Forbes A., Cao L.C. // Opto-Electron. Sci. 2023. V. 2. Art. No. 230026.
- Shah R., Abbott N. // Science. 2001. V. 293. P. 1296.
- Sutarlie L., Lim J.Y., Yang K.L. // Analyt. Chem. 2011. V. 83. P. 5253.
- Luk Y.-Y., Abbott N. // Science. 2003. V. 301. P. 623.
- Tan H., Yang S.G., Shen G. et al. // Angew. Chem. Int. Ed. Engl. 2010. V. 49. P. 8608.
- Skarabot M., Ravnik M., Zumer S. et al. // Phys. Rev. E. 2008.V. 77. Art. No. 031705.
- Riviere D., Levy Y., Guyon E. // J. Phys. Lett. 1979. V. 40. P. 215.
- Alkafeef S.F., Algharaib M.R., Alajmi A.F. // J. Colloid Interface Sci. 2006. V. 298. P. 13.
- Yokoyama H., van Sprang H.A. // J. Appl. Phys. 1985. V. 57. P. 4520.
- Nastishin Yu.A., Polak R.D., Shiyanovskii S.V., Lavrentovich O.D. // Appl. Phys. Lett. V. 75. No. 2. P. 202.
- Naemura S. // Appl. Phys. Lett. 1978. V. 33. P. 1.
- Yang K.H., Rosenblatt C. // Appl. Phys. Lett. 1983. V. 43. P. 62.
- Demus D. Handbook of liquid crystals. V. 2A: low molecular weight liquid crystals I: calamitic liquid crystals. John Wiley & Sons, 2011.
- Khazimullin M.V., Lebedev Y.A. // Rev. Sci. Instrum. 2010. V. 81. No. 4. Art. No. 043110.
- Salamon P., Eber N., Krekhov A., Buka A. // Phys. Rev. E 2013. V. 87. Art. No. 032505.
- De Jeu H.H., Claassen W.A.P., Spruijt A.M.J. // Mol. Cryst. Liq. Cryst. 1976. V. 37. P. 269.
- Bogi A., Faetti S. // Liq. Cryst. 2001. V. 28. No. 5. P. 729.
Arquivos suplementares
