Measurement of nematic liquid crystals anchoring energy under crossed magnetic and electric fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for determining the anchoring energy of nematic liquid crystals to a substrate based on the measurement of the Fredericksz threshold in crossed destabilizing magnetic and electric fields is proposed.

Sobre autores

M. Khazimullin

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: maximhk@gmail.com
Ufa, 450075 Russia

Yu. Lebedev

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

Khoroshavin Khoroshavin

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

D. Makarov

Perm State University

Perm, 614068 Russia

Bibliografia

  1. De Gennes P.-G., Prost J. The physics of liquid crystals. Oxford Universal Press, 1993. 596 p.
  2. Coles H., Morris S. // Nature Photon. 2010. V. 4. P. 676.
  3. Wee D., Hwang S.H., Song Y.S., Youn J.R. // Soft Matter. 2016. V. 12. P. 3868.
  4. Humar M., Ravnik M., Pajk S., Musevic I. // Nature Photon. 2009. V. 3. P. 595.
  5. Huh J.-W., Yu B.-H., Teo J. et al. // Mol. Cryst. Liq. Cryst. 2017. V. 644. P. 20.
  6. Комяк К.Г., Кабанова О.С., Рушнова И.И. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 1. С. 10; Komyak K.G., Kabanova O.S., Rushnova I.I. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1496.
  7. Yang Y.Q., Forbes A., Cao L.C. // Opto-Electron. Sci. 2023. V. 2. Art. No. 230026.
  8. Shah R., Abbott N. // Science. 2001. V. 293. P. 1296.
  9. Sutarlie L., Lim J.Y., Yang K.L. // Analyt. Chem. 2011. V. 83. P. 5253.
  10. Luk Y.-Y., Abbott N. // Science. 2003. V. 301. P. 623.
  11. Tan H., Yang S.G., Shen G. et al. // Angew. Chem. Int. Ed. Engl. 2010. V. 49. P. 8608.
  12. Skarabot M., Ravnik M., Zumer S. et al. // Phys. Rev. E. 2008.V. 77. Art. No. 031705.
  13. Riviere D., Levy Y., Guyon E. // J. Phys. Lett. 1979. V. 40. P. 215.
  14. Alkafeef S.F., Algharaib M.R., Alajmi A.F. // J. Colloid Interface Sci. 2006. V. 298. P. 13.
  15. Yokoyama H., van Sprang H.A. // J. Appl. Phys. 1985. V. 57. P. 4520.
  16. Nastishin Yu.A., Polak R.D., Shiyanovskii S.V., Lavrentovich O.D. // Appl. Phys. Lett. V. 75. No. 2. P. 202.
  17. Naemura S. // Appl. Phys. Lett. 1978. V. 33. P. 1.
  18. Yang K.H., Rosenblatt C. // Appl. Phys. Lett. 1983. V. 43. P. 62.
  19. Demus D. Handbook of liquid crystals. V. 2A: low molecular weight liquid crystals I: calamitic liquid crystals. John Wiley & Sons, 2011.
  20. Khazimullin M.V., Lebedev Y.A. // Rev. Sci. Instrum. 2010. V. 81. No. 4. Art. No. 043110.
  21. Salamon P., Eber N., Krekhov A., Buka A. // Phys. Rev. E 2013. V. 87. Art. No. 032505.
  22. De Jeu H.H., Claassen W.A.P., Spruijt A.M.J. // Mol. Cryst. Liq. Cryst. 1976. V. 37. P. 269.
  23. Bogi A., Faetti S. // Liq. Cryst. 2001. V. 28. No. 5. P. 729.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025