Photophysical characteristics of solutions of divalent europium dihalides EuX2 (X = Cl, Br). Aluminum alkyls as enhancers of luminescence of the Eu2+ ion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The photophysical properties of solutions of EuCl2 and EuBr2dihalides in tetrahydrofuran have been studied in detail for the first time. Absorption, photoluminescence (4f65d1 → 4f7 transition) and photoluminescence excitation spectra as well as photoluminescence yields and lifetime of excited Eu2+* ions were measured. The effect of increasing the luminescence intensity of the Eu2+ ion in the presence of aluminium alkyls was discovered to be due to the rigid structure of the four-centre complex formed by the interaction of EuCl2 and EuBr2 with aluminium alkyls.

Sobre autores

R. Bulgakov

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450054 Russia

D. Galimov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

S. Yakupova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: eliseevasm@yandex.ru
Ufa, 450075 Russia

K. Vasilyuk

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

Bibliografia

  1. Ronda C. // In: Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier, 2001. P. 8026.
  2. Qiao J., Zhou G., Zhou Y. et al. // Nature Commun. 2019. V. 10. P. 5267.
  3. Rao R.P., Devine D.J. // J. Luminescence. 2000. V. 87–89. P. 1260.
  4. Alekhin M.S., Khodyuk I.V., de Haas J.T.M. et al. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 665.
  5. Kido J., Okamoto Y. // Chem. Rev. 2002. V. 102. P. 2357.
  6. Кузяев Д.М., Румянцев Р.В., Фукин Г.К., Бочкарев М.Н. // Изв. АН. Сер. хим. 2014. № 4. С. 848; Kuzyaev D.M., Rumyantsev R.V., Fukin G.K., Bochkarev M.N. // Russ. Chem. Bull. 2014. V. 63. No. 4. P. 848.
  7. Shipley C.P., Capecchi S., Salata O.V. et al. // Adv. Mater. 1999. V. 11. P. 533.
  8. Li J., Wang L., Zhao Z. et al. // Nature Commun. 2020. V. 11. P. 5218.
  9. Galimov D.I., Bulgakov R.G. et al.// J. Photochem. Photobiol. A. Chem. 2021. V. 418. Art. No. 113430.
  10. Ekanger L.A., Allen M.J., Shen Y. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14398.
  11. Basal L.A., Allen M.J. // Front. Chem. 2018. V. 6. P. 1.
  12. Blasse G., Grabmaier B.C. Luminescent Materials. Springer, 1994.
  13. Yen W.M., Yamamoto H., Shionoya S. Phosphor Handbook, Boca Raton: CRC Press, 2007.
  14. Terraschke H., Wickleder C. // Chem. Rev. 2015. V. 115. P. 11352.
  15. Jiang J., Higashiyama N., Adachi G. et al. // Coord. Chem. Rev. 1998. V. 170. P. 1.
  16. Garcia J., Allen M.J. // Eur. J. Inorg. Chem. 2012. V. 29. P. 4550.
  17. Jenks T.C., Allen M.J. Divalent Lanthanide Luminescence in Solution, Modern Applications of Lanthanide Luminescence. Springer Series on Fluorescence. Springer, 2021.
  18. Булгаков Р.Г., Якупова С.М., Галимов Д.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 626; Bulgakov R.G., Yakupova S.M., Galimov D.I. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 515.
  19. Jenks T.C., Bailey M.D., Allen M.J. et al. // Chem. Comm. 2018. V. 54. P. 4545.
  20. Basal L.A., Kajjam A.B., Allen M.J. et al. // Inorg. Chem. 2020. V. 59. No 14. P. 9476.
  21. Zhuravlev K.P., Vologzhanina A.V., Kudryashova V.A. et al. // Polyhedron. 2013. V. 56. P. 109.
  22. Yang J.H., Tsutsui M., Chen Z. et al. // Macromolecules. 1982. V. 15. No. 2. P. 230.
  23. Evans W.J., Champagne T.M. // Organometallics. 2005. V. 24. P. 570.
  24. Бочкарев М.Н., Калинина Г.С., Захаров Л.Н. и др. Органические производные редкоземельных элементов. М.: Наука, 1989. С. 232.
  25. Толстиков Г.А., Джемилев У.М., Толстиков А.Г. Алюминийорганические соединения в органическом синтезе. Новосибирск: Гео, 2009. 645 c.
  26. Przibram K. // Nature. 1935. V. 135. P. 100.
  27. Butement F.D.S. // J. Chem. Soc. Faraday Trans. 1948. V. 309. P. 617.
  28. Rogers E., Dorenbos P., de Haas J.T.M. et al. // J. Phys. Cond. Matter. 2012. V. 24. P. 275502.
  29. Galimov D.I., Bulgakov R.G. // Luminescence. 2019. V. 34. P. 127.
  30. Bulgakov R.G., Kazakov V.P., Korobeinikova V.N. // Opt. Spectrosc. 1973. V. 35. P. 497.
  31. Kamenskaya A.N., Mikheev N.B., Kholmogorova N.P. // Zhurn. Neorg. Khim. 1983. V. 28. P. 2499.
  32. Okaue Y., Isobe T. // Inorg. Chim. Acta. 1988.V. 144. P. 143.
  33. Maity S., Prasad E. // J. Photochem. Photobiol. A. Chem. 2014. V. 274. P. 64.
  34. Galimov D.I., Yakupova S.M., Bulgakov R.G. // Luminescence. 2018. V. 33. P. 1365.
  35. Булгаков Р.Г., Кулешов С.П., Махмутов А.Р. // Изв. АН. Сер. хим. 2007. № 3. C. 429; Bulgakov R.G., Kuleschov S.P., Makhmutov A.R. // Bull. Russ. Acad. Sci. Chem. 2007. V. 56. No. 3. P. 443.
  36. Булгаков Р.Г., Кулешов С.П., Махмутов А.Р. // Изв. АН СССР. Сер. хим. 1994. № 9. C. 1682.
  37. Булгаков Р.Г., Кулешов С.П., Джемилев У.М. и др. // Кинетика и катализ. 2003. Т. 44. № 5. С. 783.
  38. Золин В.Ф., Коренева Л.Г. Редкоземельный зонд в химии и биологии. М.: Наука, 1980. С. 349.
  39. DonTilley T., Andersen R.A., Zalkin A. // Inorg. Chem. 1983. V. 22. P. 856.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025