Simulation of photon transport in a fractal waveguide considered for 3–5 order nonlinearity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the features of quantum transport of photons in a waveguide lattice with a fractal structure of two types — a triangle and a Sierpinski square, formed by hexagons. Based on the discrete Schrodinger equation, considering 3–5 order nonlinearity, the evolution of the system is analyzed. The influence of fractal geometry on quantum transport of photons in a waveguide lattice is revealed.

Sobre autores

R. Trofimov

Volgograd State University

Email: yana_nn@volsu.ru
Volgograd, 400062 Russia

N. Konobeeva

Volgograd State University

Volgograd, 400062 Russia

Bibliografia

  1. Семенова Е.М., Иванов Д.В., Ляхова М.Б. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1245 // Semenova E.M., Ivanov D.V., Lyahova M.B. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 955.
  2. Иванов Д.В., Антонов А.С., Кузьмин Н.Б. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1389; Ivanov D.V., Antonov A.S., Kuz’min N.B. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1425.
  3. Vu C.C., Truong T.T.N., Kim J. // Materials Today. Physics. 2022. V. 27. P. 100795.
  4. Perets H.B., Lahini Y., Pozzi F. et al. // Phys. Rev. Lett. 2008. V. 100. P. 170506.
  5. Ghadiyali M., Chacko S. // ArXiv: 1904.11862. 2019.
  6. Westerhout T., van Veen E., Katsnelson M.I. et al. // Phys. Rev. B. 2018. V. 97. P. 2054348.
  7. Pedersen T.G. // Phys. Rev. B. 2020. V. 101. P. 235427.
  8. Hanafi H., Menz P., Denz C. // In: Nonlinear Optics. Washington, 2021. P. NM2A.6.
  9. Biesenthal T., Maczewsky L., Yang Z. et al. // Science. 2022. V. 376. No. 6597. P. 1114.
  10. Li M., Li C., Yan L. et al. // Light. Sci. Appl. 2023. V. 12. Art. No. 262.
  11. ben-Avraham D., Havlin S. Diffusion and reactions in fractals and disordered systems. Cambridge: Cambridge Univ. Press, 2000.
  12. Sokolov I.M. // J. Phys. A. Math. Teor. 2016. V. 49. P. 095003.
  13. Reis F.D.A., Voller V.R. // Phys. Rev. E. 2019. V. 99. P. 042111.
  14. Sibatov R.T., Golmnkhaneh A.Kh., Meftakhutdinov R.M. et al. // Fractal Fract. 2022. V. 6. P. 115.
  15. Xu X.-Y., Wang X.-W., Chen D.-Y. et al. // Nature Photonics. 2021. V. 15. P. 703.
  16. Bagnato V.S., Frantzeskakis D.J., Kevrekidis P.G. et al. // Roman. Rep. Phys. 2015. V. 67. P. 5.
  17. Кандидов В.П., Чекалин С.В., Компанец В.О и др. // Сб. тезисов XI международного симпозиума по фотонному эхо и когерентной спектроскопии «ФЭКС-2017». (Светлогорск, 2017). С. 16.
  18. Tang H., Lin X.-F., Fen Z. et al. // Sci. Advances. 2018. V. 4. No. 5. Art. No. eaat3174.
  19. Eisenberg H.S., Silberberg Y., Morandotti R. et al. // Phys. Rev. Lett. 1998. V. 81. No. 16. P. 3383.
  20. Ashcroft N.W., Mermin N.D. Solid State Physics. Belmont: Brooks Cole, 1976.
  21. Corem N., Ditkowski A. // J. Sci. Comput. 2012. V. 53. No. 1. P. 35.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025