Simulation of photon transport in a fractal waveguide considered for 3–5 order nonlinearity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the features of quantum transport of photons in a waveguide lattice with a fractal structure of two types — a triangle and a Sierpinski square, formed by hexagons. Based on the discrete Schrodinger equation, considering 3–5 order nonlinearity, the evolution of the system is analyzed. The influence of fractal geometry on quantum transport of photons in a waveguide lattice is revealed.

作者简介

R. Trofimov

Volgograd State University

Email: yana_nn@volsu.ru
Volgograd, 400062 Russia

N. Konobeeva

Volgograd State University

Volgograd, 400062 Russia

参考

  1. Семенова Е.М., Иванов Д.В., Ляхова М.Б. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1245 // Semenova E.M., Ivanov D.V., Lyahova M.B. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 955.
  2. Иванов Д.В., Антонов А.С., Кузьмин Н.Б. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1389; Ivanov D.V., Antonov A.S., Kuz’min N.B. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1425.
  3. Vu C.C., Truong T.T.N., Kim J. // Materials Today. Physics. 2022. V. 27. P. 100795.
  4. Perets H.B., Lahini Y., Pozzi F. et al. // Phys. Rev. Lett. 2008. V. 100. P. 170506.
  5. Ghadiyali M., Chacko S. // ArXiv: 1904.11862. 2019.
  6. Westerhout T., van Veen E., Katsnelson M.I. et al. // Phys. Rev. B. 2018. V. 97. P. 2054348.
  7. Pedersen T.G. // Phys. Rev. B. 2020. V. 101. P. 235427.
  8. Hanafi H., Menz P., Denz C. // In: Nonlinear Optics. Washington, 2021. P. NM2A.6.
  9. Biesenthal T., Maczewsky L., Yang Z. et al. // Science. 2022. V. 376. No. 6597. P. 1114.
  10. Li M., Li C., Yan L. et al. // Light. Sci. Appl. 2023. V. 12. Art. No. 262.
  11. ben-Avraham D., Havlin S. Diffusion and reactions in fractals and disordered systems. Cambridge: Cambridge Univ. Press, 2000.
  12. Sokolov I.M. // J. Phys. A. Math. Teor. 2016. V. 49. P. 095003.
  13. Reis F.D.A., Voller V.R. // Phys. Rev. E. 2019. V. 99. P. 042111.
  14. Sibatov R.T., Golmnkhaneh A.Kh., Meftakhutdinov R.M. et al. // Fractal Fract. 2022. V. 6. P. 115.
  15. Xu X.-Y., Wang X.-W., Chen D.-Y. et al. // Nature Photonics. 2021. V. 15. P. 703.
  16. Bagnato V.S., Frantzeskakis D.J., Kevrekidis P.G. et al. // Roman. Rep. Phys. 2015. V. 67. P. 5.
  17. Кандидов В.П., Чекалин С.В., Компанец В.О и др. // Сб. тезисов XI международного симпозиума по фотонному эхо и когерентной спектроскопии «ФЭКС-2017». (Светлогорск, 2017). С. 16.
  18. Tang H., Lin X.-F., Fen Z. et al. // Sci. Advances. 2018. V. 4. No. 5. Art. No. eaat3174.
  19. Eisenberg H.S., Silberberg Y., Morandotti R. et al. // Phys. Rev. Lett. 1998. V. 81. No. 16. P. 3383.
  20. Ashcroft N.W., Mermin N.D. Solid State Physics. Belmont: Brooks Cole, 1976.
  21. Corem N., Ditkowski A. // J. Sci. Comput. 2012. V. 53. No. 1. P. 35.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025