Analysis of the effect of a recurrent neural network size on modeling and prediction accuracy of a stochastic FitzHugh–Nagumo neuron

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the performance of a reservoir computing-based network in dynamics forecast of a FitzHugh–Nagumo model driven by white noise versus reservoir size. We show that the accuracy of signal prediction of a model neuron strongly depends on the number of neurons in the reservoir. The most accurate prediction of both the dynamics itself and the simulation of the coherence resonance phenomenon is achieved when using 500 neurons.

Sobre autores

N. Kulagin

Immanuel Kant Baltic Federal University

Email: kulagin.nikita03@gmail.com
Kaliningrad, 236041 Russia

A. Andreev

Immanuel Kant Baltic Federal University

Kaliningrad, 236041 Russia

A. Hramov

Immanuel Kant Baltic Federal University

Kaliningrad, 236041 Russia

Bibliografia

  1. Hewamalage H., Bergmeir C., Bandara K. // Int. J. Forecast. 2021. V. 37. No. 1. P. 388.
  2. Salmela L., Tsipinakis N., Foi A. et al. // Nature Mach. Intell. 2021. V. 3. No. 4. P. 344.
  3. Vlachas P.R., Pathak J., Hunt B.R. et al. // Neural Networks. 2020. V. 126. P. 191.
  4. Sangiorgio M., Dercole F. // Chaos Soliton. Fract. 2020. V. 139. Art. No. 110045.
  5. Batmanova A., Kuc A., Maksimenko V. et al. // Mathematics. 2022. V. 10. No. 17. Art. No. 3153.
  6. Hodgkin A.L., Huxley A.F. // J. Physiol. 1952. V. 117. No. 4. P. 500.
  7. FitzHugh R. // Biophys J. 1961. V. 1. No. 6. P. 445.
  8. Hindmarsh J.L., Rose R.M. // Proc. Royal. Soc. Lond. B. 1984. V. 221. No. 1222. P. 87.
  9. Lee S., Neiman A., Kim S. // Phys. Rev. E. 1998. V. 57. No. 3. P. 3292.
  10. Pikovsky A.S., Kurths J. // Phys. Rev. Lett. 1997. V. 78. No. 5. P. 775.
  11. Wu S., Ren W., He K., Huang Z. // Phys. Lett. A. 2001. V. 279. No. 5-6. P. 347.
  12. Hramov A.E., Kulagin N., Andreev A.V., Pisarchik A.N. // Chaos Soliton. Fractal. 2024. V. 178. Art. No. 114354.
  13. Andreev A.V., Badarin A.A., Maximenko V.A., Hramov A.E. // Chaos. 2022. V. 32. No. 10. Art. No. 103126.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025