Electron-microscopic study of phase transformations in 316L austenitic steel manufactured by laser 3D printing

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We studied the structure and phases in porous samples of 316L austenitic steel manufactured by laser 3D printing. Transmission electron microscopy revealed the presence of residual δ-ferrite along with austenite in the sample. A high density of dislocations is also observed in the sample. EBSD analysis revealed a lack of texture.

Sobre autores

N. Kazantseva

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport

Autor responsável pela correspondência
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg

N. Vinogradova

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

Yu. Koemets

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

I. Ezhov

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

D. Davidov

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg

Bibliografia

  1. Баранникова С.А., Никонова A.M., Колосов С.В. // Вест. ПНИПУ. Мех. 2021. № 1. С. 22.
  2. Shrinivas V., Varma S.K., Murr L.E. // Metall. Mater. Trans. A. 1995. V. 26A. P. 661.
  3. Tucho W.M., Lysne V.H., Austbø H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
  4. Solomon N., Solomon I. // Rev. Metal. 2010. V. 46. No. 2. P. 121.
  5. Meszaros I., Prohaszka J. // J. Mater. Process. Technol. 2005. V. 161. P. 162.
  6. Nalepka K., Skocze B., Ciepielowska M. et al. // Materials. 2021. V. 14. P. 127.
  7. Gradzka-Dahlke M., Waliszewski J. // Defect Diffus. Forum. 2009. V. 283. P. 285.
  8. Vock S., Klöden B., Kirchner A. et al. // Progr. Add. Manufact. 2019. V. 4. P. 383.
  9. Bartolomeu F., Buciumeanu M., Pinto E. et al. // Add. Manufact. 2017. V. 16. P. 81.
  10. Bajaj P., Hariharan A., KiniA. et al. // Mater. Sci. Engin. A. 2020. V. 772. Art. No. 138633.
  11. Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong // Mater. Design. 2016. V. 104. P. 197.
  12. Krakhmalev P., Fredriksson G., Svensson K. et al. // Metals. 2018. V. 8. Art. No. 643.
  13. Tucho W.M., Lysne V.H., Austbo H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
  14. Lo K.H. // Mater. Sci. Engin. R. 2009. V. 65. P. 39.
  15. Saluja R., Moeed K. // Int. J. Engin. Sci. Technol. 2012. V. 4. № 5. P. 2206.
  16. Fofanov D., Riedner S. // Proc. 2011 SSW Conf. Exhib. (Maastricht, 2011). P. 1.
  17. Andreaua O., Koutiri I., Patrice Peyre P. et al. // J. Mater. Proc. Tech. 2019. V. 264. P. 21.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2MB)
4.

Baixar (2MB)

Declaração de direitos autorais © Н.В. Казанцева, Н.И. Виноградова, Ю.Н. Коэмец, И.В. Ежов, Д.И. Давыдов, 2023