Micromagnetic states and Bloch points in multilayer nanofilms: influence of anisotropy and magnetic field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented a numerical simulation of the processes of magnetization reversal of an exchange-coupled magnetic nanostructure, studies micromagnetic states in the system and their transformation under the influence of an external magnetic field and shows the possibility of realizing magnetic states of the Bloch point type. The influence of magnetic anisotropy constants of the “easy plane” type on the conditions of existence and structure of topological objects is studied.

作者简介

V. Filippova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: mukhamadeeva.vika@mail.ru
Ufa, 450075 Russia

Z. Gareeva

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

参考

  1. Загорский Д.Л., Долуденко И.М., Чигарев С.Г. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 8. C. 1102; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 848.
  2. Шканакина М.Д., Кичин Г.А., Скирдков П.Т. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 2. C. 109; Shkanakina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
  3. Акимов М.Л., Поляков П.А., Шевцов В.С. // Изв. РАН. Сер. физ. 2020. T. 84. № 5. C. 723; Akimov M.L., Polyakov P.A., Shevtsov V.S. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 596.
  4. Lang M., Beg M., Hovorka O., Fangohr H. // Sci. Reports. 2023. V. 13. Art. No. 6910.
  5. Gobel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
  6. Feldtkeller E. // Z. Angew. Phys. 1965. V. 19. No. 6. P. 530.
  7. Doring W. // J. Appl. Phys. 1968. V. 39. No. 2. P. 1006.
  8. Harrison C.G., Leaver K.D. // Phys. Stat. Sol. 1973. V. 15. P. 415.
  9. Зубов В.Е., Кринчик Г.С., Кудаков А.Д. // Письма в ЖЭТФ. 1988. T. 47. № 3. C. 134; Zubov V.E., Krinchik G.S., Kudakov A.D. // JETP Lett. 1988. V. 47. No. 1. P. 161.
  10. Кабанов Ю.П., Дедух Л.М., Никитенко В.И. // Письма в ЖЭТФ. 1989. V. 49. № 10. Р. 551; Kabanov Y.P., Dedukh L.M., Nikitenko V.I. // JETP Lett. 1989. V. 49. No. 10. Р. 637.
  11. Andreas C., Kа?kay A., Hertel R. // Phys. Rev. 2014. V. 89. No. 13. Art. No. 134403.
  12. Tiaville A., Garca J.M., Dittrich R. et al. // Phys. Rev. 2003. V. 67. No. 9. Art. No. 094410.
  13. Hertel R., Gliga S., Fahnle M., Schneider C.M. // Phys. Rev. Lett. 2007. V. 98. No. 11. Art. No. 117201.
  14. Wohlhuter P., Bryan M.T., Warnicke P. et al. // Nature Commun. 2015. V. 6. No. 1. Art. No. 7836.
  15. Hertel R., Schneider C.M. // Phys. Rev. Lett. 2006. V. 97. No. 17. Art. No. 177202.
  16. Beg M., Pepper R.A., Cortes-Ortuno D. et al. // Sci. Reports. 2019. V. 9. No. 1. Art. No. 7959.
  17. Lang M., Pathak S.A., Holt S.J.R. et al. // Sci. Reports. 2023. V. 13. No. 1. Art. No. 18934.
  18. Donahue M.J., Porter D.G. // OOMMF User’s Guide. Version 1.0. No. NIST IR 6376. NIST, 1999. 94 р.
  19. Malozemoff A.P., Slonczewski J.C. Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research. Academic Press., 2013. 334 р.
  20. Eschenfelder A.H. Magnetic Bubble Technology. Springer Science & Business Media, 2012. 317 р.
  21. Bauer J.J., Rosenberg E.R., Kundu S. et al. // Adv. Electr. Mater. 2020. V. 6. No. 1. Art. No. 1900820.
  22. Gareeva Z.V., Filippova V.V., Shulga N.V., Doroshenko R.A. // Phys. Chem. Chem. Phys. 2024. V. 26. No. 3. Art. No. 22164.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025