Evolutionary nonstationarity of economic cycles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the article, the nonstationarity of economic cycles is studied using their one-dimensional model of the “investment → income” type. The model interprets the cycle as random oscillations of an elastic system induced by exogenous (investment fluctuations) and endogenous (system properties) causes. This approach provided a quantitative description of economic cycles through the parameters of the elastic system — its natural frequency and damping factor. The nonstationarity of cycles is analyzed by the time trend of their natural frequencies. Such an analysis was performed for the period 1960–2020 by the amplitude spectra of US GDP deviations. Its results showed a simultaneous and steady decrease in the duration of the three considered cycles. This means that the results of observing these cycles do not have the ergodic property. Therefore, the adaptation of the cycle model to empirical data is possible for a time interval in which it can be considered pseudo-stationary.

Texto integral

Acesso é fechado

Sobre autores

V. Karmalita

Private consultant

Autor responsável pela correspondência
Email: karmalita@videotron.ca
Canadá

G. Khanian

CIAM named after P. I. Baranov

Email: khanian@mail.ru

Senior researcher

Rússia, Moscow

Bibliografia

  1. Bolotin V. V. (1984). Random vibrations of elastic systems. Heidelberg: Springer. 468 p.
  2. Brandt S. (2014). Data analysis: Statistical and computational methods for scientists and engineers. 4th ed. Cham (Switzerland): Springer. 523 p.
  3. Cho S. (2018). Fourier transform and its applications using Microsoft EXCEL®. San Rafael (CA): Morgan & Claypool. 123 p.
  4. Cooley T. F., Prescott E. C. (1995). Economic growth and business cycles. In: Frontiers of business cycle research. T. F. Cooley (ed.). Princeton: Princeton University Press, 1–38.
  5. Karmalita V. (2020). Stochastic dynamics of economic cycles. Berlin: De Gruyter. 106 p.
  6. Karmalita V. A. (2023). Managing the prime rate to counter the cyclic income contraction. Economics and Mathematical Methods, 59 (3), 69–76. [Кармалита В. А. (2023). Managing the prime rate to counter the cyclic income contraction // Экономика и математические методы. Т. 59. № 3. С. 69–76.]
  7. Pain H. J. (2005). The physics of vibrations and waves. 6th ed. Chichester: John Wiley & Sons. 576 p.
  8. Pavleino M. A., Romadanov V. M. (2007). Spectral transforms in MATLAB®. St.-Petersburg: SPb SU. 160 p. (in Russian). [Павлейно М. А., Ромаданов В. М. (2007). Спектральные преобразования в MATLAB. Учебно-методическое пособие. Санкт-Петербург: Санкт-Петербургский государственный университет. 160 c.]
  9. Yamaguchi R., Islam M., Managi S. (2019). Inclusive wealth in the twenty-first century: A summary and further discussions of Inclusive Wealth Report 2018. Letters in Spatial and Resource Sciences, 12 (2), 101–111.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of Kσ on h

Baixar (6KB)
3. Fig. 2. Evolutionary growth of WI (per capita)

Baixar (4KB)
4. Fig. 3. Amplitude frequency characteristics of the linear elastic system

Baixar (10KB)
5. Fig. 4. Amplitude spectrum of white noise

Baixar (4KB)
6. Fig. 5. The frequency characteristic of the estimator

Baixar (7KB)
7. Fig. 6. Diagram of estimating GDP

Baixar (7KB)
8. Fig. 7. Real GDP estimates of the US economy

Baixar (7KB)
9. Fig. 8. Deviations of GDP estimates

Baixar (7KB)
10. Fig. 9. The spectrum of GDP deviations

Baixar (9KB)
11. Fig. 10. Trends of natural frequencies of economic cycles

Baixar (16KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025