5-Arylpyrrolidine-2-carboxylic acid derivatives as precursors in the synthesis of sulfonyl-substituted pyrroles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

cis-5-Arylpyrrolidine-2-carboxylates obtained in 1,3-dipolar cycloaddition reactions from arylaldimines of glycine and vinyl sulfones go through oxidative aromatization under the action of manganese(IV) oxide to the 5-aryl-2-pyrrolecarboxylates in high yield. Factors affecting the retention of the sulfonyl substituent in the pyrrole molecule have been established.

Авторлар туралы

S. Kostryukov

National Research Ogarev Mordovia State University

Email: kostryukov_sg@mail.ru
ul. Bolshevistskaya, 68, Saransk, 430005 Russia

V. Kalyazin

National Research Ogarev Mordovia State University

ul. Bolshevistskaya, 68, Saransk, 430005 Russia

P. Petrov

National Research Ogarev Mordovia State University

ul. Bolshevistskaya, 68, Saransk, 430005 Russia

E. Bezrukova

National Research Ogarev Mordovia State University

ul. Bolshevistskaya, 68, Saransk, 430005 Russia

N. Somov

Lobachevsky State University of Nizhny Novgorod

prosp. Gagarina, 23, Nizhnij Novgorod, 603950 Russia

Әдебиет тізімі

  1. O’Malley D.P., Li K., Maue M., Zografos A.L., Ba- ran P.S. J. Am. Chem. Soc. 2007, 129, 4762–4775. doi: 10.1021/ja069035a
  2. Wang X., Gao Y., Ma Z., Rodriguez R.A., Yu Z.-X., Chen C. Org. Chem. Front. 2015, 2, 978–984. doi: 10.1039/C5QO00165J
  3. Hughes C.C., Prieto-Davo A., Jensen P.R., Fenical W. Org. Lett. 2008, 10, 629–631. doi: 10.1021/ol702952n
  4. Bhardwaj V., Gumber D., Abbot V., Dhimana S., Sharmaa P. RSC Adv. 2015, 5, 15233–15266. doi: 10.1039/C4RA15710A
  5. Mohamed M.S., Fathallah S.S. Mini Rev. Org. Chem. 2014, 11, 477–507. doi: 10.2174/1570193X113106660018
  6. Bellina F., Rossi R. Tetrahedron. 2006, 62, 7213–7256. doi: 10.1016/j.tet.2006.05.024
  7. Sharma V., Bhatia P., Alam O., Naim M.J., Nawaz F., Sheikh A.A., Jhadoi M. Bioorg. Chem. 2019, 89, ID 103007. doi: 10.1016/j.bioorg.2019.103007
  8. Dhameja M., Gupta P. Eur. J. Med. Chem. 2019, 176, 343–377. doi: 10.1016/j.ejmech.2019.04.025
  9. Masci D., Hind C., Toscani A., Clifford M., Coluccia A., Conforti I., Touitou M., Memdouh S., Wei X., La Regina G., Silvestri R., Sutton J.M., Castagnolo D. Eur. J. Med. Chem. 2019, 178, 500–514. doi: 10.1016/j.ejmech.2019.05.087
  10. Raimondi M.V., Listro R., Cusimano M.G., La Francaa M., Faddetta T., Galloa G., Schillaci D., Collina S., Leonchiks A., Barone G. Bioorg. Med. Chem. 2019, 27, 721–728. doi: 10.1016/j.bmc.2019.01.010
  11. Knorr L. Ber. Chem. Ges. 1884, 17, 1635–1642. doi: 10.1002/cber.18840170220
  12. Paal C. Ber. Chem. Ges. 1885, 18, 367–371. doi: 10.1002/cber.18850180175
  13. Hantzsch A. Ber. Chem. Ges. 1890, 23, 1474–1476. doi: 10.1002/cber.189002301243
  14. Leonardi M., Estévez V., Villacampa M., Menéndez J.C. Synthesis. 2019, 51, 816–828. doi: 10.1055/s-0037-1610320
  15. Tejedor D. González-Cruz D., García-Tellado F., Marrero-Tellado J.J., Rodríguez M.L. J. Am. Chem. Soc. 2004, 126, 8390–8391. doi: 10.1021/ja047396p
  16. Cyr D.J., Martin N., Arndtsen B.A. Org. Lett. 2007, 9, 449–452. doi: 10.1021/ol062773j
  17. Balakrishna A., Aguiar A., Sobral P.J.M., Wani M.Y., Silva J.A., Sobraldoi A.J.F.N. Catal. Rev. Sci. Eng. 2019, 61, 449–452. doi: 10.1080/01614940.2018.1529932
  18. Hati S., Holzgrabe U., Sen S. Beilstein J. Org. Chem. 2017, 13, 1670–1692. doi: 10.3762/bjoc.13.162
  19. Feng C., Yan Y., Zhang Z., Xua K., Wang Z. Org. Biomol. Chem. 2014, 12, 4837–4840. doi: 10.1039/c4ob00708e
  20. Bonnaud B., Bigg C.H. Synthesis. 1994, 5, 465–467. doi: 10.1055/s-1994-25500
  21. Liu Y., Hu H., Wang X., Zhi S., Kan Y., Wang C. J. Org. Chem. 2017, 82, 4194–4202. doi: 10.1021/acs.joc.7b00180
  22. Cheruku S.R., Padmanilayam M.P., Vennerstrom J.L. Tetrahedron Lett. 2003, 44, 3701–3703. doi: 10.1016/S0040-4039(03)00740-8
  23. Blaney P., Grigg R., Rankovic Z., Thornton-Pett M., Xu J. Tetrahedron. 2002, 58, 1719–1737. doi: 10.1016/S0040-4020(02)00029-7
  24. Петров П.С., Калязин В.А., Сомов Н.В. ЖОрХ. 2021, 57, 201–211. doi: 10.31857/S0514749221020063
  25. Kudryavtsev K.V., Ivantcova P.M., Churakov A.V., Vasin V.A. Tetrahedron Lett. 2012, 53, 4300–4303. doi: 10.1016/j.tetlet.2012.05.160
  26. Casas J., Grigg R., Najera C., Sansano J.M. Eur. J. Org. Chem. 2001, 123, 1971. doi: 10.1002/1099-0690(200105)2001:10<1971::AID-EJ OC 1971 >3.0.CO;2-U
  27. Arrieta A., Otaegui D., Zubia A., Cossío F.P., Díaz-Ortiz A., de la Hoz A., Herrero M.A., Prieto P., Foces-Foces C., Pizarro L.J., Arriortua M.I. J. Org. Chem. 2007, 72, 4313–4322. doi: 10.1021/jo062672z
  28. Goldman I.M. J. Org. Chem. 1969, 34, 3289–3295. doi: 10.1021/jo01263a015
  29. Nájera C., Baldó B., Yus M. J. Chem. Soc., Perkin Trans. 1. 1988, 1029–1032. doi: 10.1039/P19880001029
  30. Fu J., He Z., Wang H., Liang W., Guo C. J. Min. Sci. Technol. 2010, 20, 877–881. doi: 10.1016/S1674-5264(09)60299-4
  31. Sheldrick G.M. Acta Cryst. Sect. A. 2015, 71, 3–8. doi: 10.1107/S2053229614024218
  32. Hübschle C.B., Sheldrick G.M., Dittrich B. J. Appl. Cryst. 2011, 44, 1281–1284. doi: 10.1107/S0021889811043202
  33. Clark R.C., Reid J.S. Acta Cryst. 1995, A51, 887–897. doi: 10.1107/S0108767395007367
  34. Farrugia L.J. J. Appl. Cryst. 2012, 45, 849–854. doi: 10.1107/S0021889812029111

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025