Interaction of maleimides and itaconimides with carboxymethyleneazine binucleophiles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The nature of the interaction of N-arylmaleimides and N-arylitaconimides with some carboxymethyleneazines has been studied. The reaction of itaconic acid imides with oxopiperazinylidene acetates and oxomorpholinylidene acetate leads to imide recyclization and the formation of pyridine-containing heterosystems. The interaction of N-arylitaconimides and N-arylmaleimides with oxoquinoxalinylidene acetate involves Michael addition with the formation of linear adducts. The features of this process have been substantiated using quantum-chemical calculations.

Texto integral

Acesso é fechado

Sobre autores

Ya. Kulichikhina

Voronezh State University

Autor responsável pela correspondência
Email: shmoylovay@gmail.com
ORCID ID: 0000-0003-0818-9920
Rússia, Universitetskaya pl., 1, Voronezh, 394018

S. Medvedeva

Voronezh State University

Email: shmoylovay@gmail.com
ORCID ID: 0000-0003-0236-9197
Rússia, Universitetskaya pl., 1, Voronezh, 394018

I. Nechaev

Voronezh State University

Email: shmoylovay@gmail.com
ORCID ID: 0000-0002-1232-8869
Rússia, Universitetskaya pl., 1, Voronezh, 394018

Yu. Kovygin

Voronezh State University

Email: shmoylovay@gmail.com
ORCID ID: 0000-0001-5286-2874
Rússia, Universitetskaya pl., 1, Voronezh, 394018

М. Present

Zelinsky Russian Academy of Sciences

Email: shmoylovay@gmail.com
ORCID ID: 0000-0002-1164-9652
Rússia, Leninsky prosp., 4, Moscow, 119991

D. Nikitenko

Russia сInstitute of Physical Organic Chemistry and Coal Chemistry

Email: shmoylovay@gmail.com
ORCID ID: 0000-0001-6902-8114
Rússia, ul. Rosy Luxemburg, 70, Donetsk, 283048

Kh. Shikhaliev

Voronezh State University

Email: shmoylovay@gmail.com
ORCID ID: 0000-0002-6576-0305
Rússia, Universitetskaya pl., 1, Voronezh, 394018

Bibliografia

  1. Ritchie T.J., Macdonald S.J. Drug Discov. Today. 2009, 14, 1011–1020. doi: 10.1016/j.drudis.2009.07.014
  2. Lovering F., Bikker J., Humblet C. J. Med. Chem. 2009, 52, 6752–6756. doi: 10.1021/jm901241e.
  3. Morley A.D., Pugliese A., Birchall K., Bower J., Brennan P., Brown N., Chapman T., Drysdale M., Gilbert I.H., Hoelder S., Jordan A., Ley S.V., Merritt A., Miller D., Swarbrick M.E., Wyatt P.G. Drug Discov. Today, 2013, 18, 1221–1227. doi: 10.1016/j.drudis.2013.07.011
  4. Vandyshev D.Y., Shikhaliev K.S. Molecules. 2022, 27, 5268. doi: 10.3390/molecules27165268
  5. Hernandez H.F.C., Castro M. J. Mol. Struct. 2016, 1125, 79–92. doi: 10.1016/j.molstruc.2016.06.063.
  6. Panov A.A., Simonov A.Yu., Lavrenov S.N., Lakatosh S.A., Trenin A.S. Chem. Heterocycl. Compd., 2018, 54, 103–113. doi: 10.1007/s10593-018-2240-z.
  7. Dolci E., Froidevaux V., Joly-Duhamel C., Auvergne R., Boutevin B., Caillol S. Polymer Rev. 2015. 56, 512–556. doi: 10.1080/15583724.2015.1116094.
  8. Ma Z., Qiu S., Chen H.C., Zhang D., Lu Y.L., Chen X.L. J. Asian Natural Prod. Res. 2022, 24, 1–14. doi: 10.1080/10286020.2021.1877675.
  9. Shi Q., Zhang Y., Huang Z., Zhou N., Zhang Z., Zhu X. Polymer J. 2020, 52, 21–31. doi: 10.1038/s41428-019-0263-7
  10. Fische G. Adv. Heterocycl. Chem. 2021, 135, 1–55. doi: 10.1016/bs.aihch.2020.08.003
  11. Rival Y., Grassy G., Michel G. Chem. Pharm. Bull. 1992, 40, 1170–1176. doi: 10.1248/cpb.40.1170
  12. Barlaam B., Casella R., Cidado J., Cook C., De Savi Ch., Dishington A., Donald C.S., Drew L., Ferguson A.D., Ferguson D., Glossop S., Grebe T., Gu Ch., Hande S., Hawkins J., Hird A.W., Holmes J., Horstick J., Jiang Y., Lamb M.L., McGuire Th.M., Moore J.E., O’Connell N., Pike A., Pike K.G., Proia Th., Roberts B., San Martin M., Sarkar U., Shao W., Stead D., Sumner N., Thakur K., Vasbinder M.M., Varnes J.G., Wang J., Wang L., Wu D., Wu L., Yang B., Yao T. J. Med. Chem. 2020, 63, 15564–15590. doi: 10.1021/acs.jmedchem.0c01754
  13. Shikhaliev Kh.S., Kovygin Y.A., Potapov A.Y., Sabynin A.L., Kosheleva E.A. Russ. Chem. Bull. 2017, 66, 86–90. doi: 10.1007/s11172-017-1704-0
  14. Ковыгин Ю.А., Столповская Н.В., Зорина А.В., Сабынин А.Л., Вандышев Д.Ю., Кружилин А.А., Крысин М.Ю., Шихалиев Х.С. Вестн. ВГУ. Сер.: Хим. Биол. Фарм. 2018, 4, 15–24. [Kovygin Yu.A., Stolpovskaya N.V., Zorina A.V., Sabynin A.L., Vandyshev D.Yu., Kruzhilin A.A., Krysin M.Yu., Shikhaliev Kh.S. Vestnik VSU, Ser.: Chemistry. Biology. Pharmacy. 2018, 4, 15–24.]
  15. Matviiuk T., Gorichko M., Kysil A., Shishkina S., Shishkin O., Voitenko Z. Synthetic. Commun. 2012, 42, 3304–3310. doi: 10.1080/00397911.2011.580883
  16. Abelman M.M., Fisher K.J., Dorerffler E.M., Edwards P.J. Tetrahedron Lett. 2003, 44, 1823–1826. doi: 10.1016/S0040-4039(03)00103-5
  17. Зорина А.В., Шихалиев Х.С., Ковыгин Ю.А. Вестн. ВГУ. Сер.: Хим. Биол. Фарм. 2005, 1, 39–41. [Zorina A.V., Shikhaliev Kh.S., Kovygin Yu.A. Vestnik VSU, Ser.: Chemistry. Biology. Pharmacy. 2005, 1, 39–41.]
  18. Романенко В.Д., Кульчицкая Н.Э., Бурмистров С.И. Хим. Гетероцикл. Соедин. 1973, 61, 264–266. [Romanenko V.D., Kulchitskaya N.E., Burmistrov S.I. Khim. Geterotsikl. Soedin. 1973, 61, 264–266.]
  19. Cobo J., Sánchez A., Nogueras M. Tetrahedron 1998, 54, 5753–5762. doi: 10.1016/s0040-4020(98)00263-4
  20. Vel’chinskaya E.V., Kuz’menko I.I., Kulik L.S. Pharm. Chem. J. 1999, 33, 155–157. doi: 10.1007/bf02508455
  21. Velchinskaya E., Petsushak B., Rogal A. Chem. Heterocycl. Compd. 2007, 43, 695–700. doi: 10.1007/s10593-007-0113-y
  22. Романов П.С., Петров В.В., Крысин М.Ю., Зорина А.В., Шихалиев Х.С. Вестн. ВГУ. Сер.: Хим. Биол. Фарм. 2007, 1, 49–50. [Romanov P.S., Petrov V.V., Krysin M.Y., Zorina A.V., Shikhaliev Kh.S. Vestnik VSU, Ser.: Chemistry. Biology. Pharmacy. 2007, 1, 49–50.]
  23. Rudenko R.V., Komykhov S.A., Desenko S.M., Musatov V.I., Shishkin O.V., Konovalova I.S., Vashchenko E.V, Chebanov V.A. Synthesis. 2011, 5, 783–793. doi: 10.1055/s-0030-1258421
  24. Vandyshev D.Yu., Shikhaliev K.S., Kokonova A.V., Potapov A.Yu., Kolpakova M.G., Sabynin A.L., Zubkov F.I. Chem. Heterocycl. Compd. 2016, 52, 493.
  25. Vandyshev D.Yu., Shikhaliev K.S., Potapov A.Yu., Krysin M.Yu., Zubkov F.I., Sapronova L.V. J. Org. Chem. 2017, 13, 2561.
  26. Kovygin Y.A., Shikhaliev K.S., Krysin M.Y., Potapov A.Y., Ledenyova I.V., Kosheleva Y.A., Vandyshev D.Y. Chem. Heterocycl. Compd. 2019, 55, 748–754.
  27. Ковыгин Ю.А., Вандышев Д.Ю., Леденева И.В., Кошелева Е.А., Поликарчук В.А., Козадеров О.А., Шихалиев К.С. Изв. РАН. Сер. хим. 2021, 70, 520–526. [Kovygin Y.A., Vandyshev D.Y., Ledenyova I.V., Kosheleva E.A., Polikarchuk V.A., Kozaderov O.A., Shikhaliev K.S. Russ. Chem. Bull. 2021, 70, 520–526.]
  28. Shmoylova Y.Y., Kovygin Y. A., Kosheleva E. A., Shikhaliev K.S., Ledenyova I.V., Prezent, M.A. Mend. Com. 2022. 32, 688–690.
  29. Kovygin Y.A., Shikhaliev K.S., Shmoylova (Kulichihina) Y.Y. Synthesis. 2024, 56, 2703–2708.
  30. Vandyshev D.Y., Shikhaliev K.S., Kokonova A.V., Potapov A.Y., Kolpakova M.G., Sabynin A.L., Zubkov F.I. Chem. Heterocycl. Compd. 2019, 52, 493–497. doi: 10.1007/s10593-019-02530-5
  31. Shmoylova Y.Y., Kovygin Y.A., Ledenyova I.V., Prezent M.A., Baranin S.V., Shikhaliev K.S. Mendeleev. Commun. 2021, 31, 254–256. doi: 10.1016/j.mencom.2021.03.037
  32. Сотников Н.М., Ковыгин Ю.А., Вандышев Д.Ю., Леденева И.В., Кошелева Ю.А., Козадеров О.А., Шихалиев К.С. Хим. Гетероцикл. Соедин. 2021, 57, 154–158. [Sotnikov N.M., Kovygin Y.А., Vandyshev D.Y., Ledenyova I.V., Kosheleva Y.А., Kozadyorov O.А., Shikhaliev K.S. Chem. Heterocycl. Compd. 2021, 57, 154–158.]
  33. Ковыгин Ю.А., Зотова И.С., Сотников Н.М., Поликарчук В.А., Шихалиев К.С. Менделеев Комм. 2024, 34, 282–284. [Kovygin Y.A., Zotova I.S., Sotnikov N.M., Polikarchuk V.A., Shikhaliev K.S. Mendeleev Commun. 2024, 34, 282–284.]
  34. Vovk M.V., Kushnir O.V., Melˈnichenko N.V., Tsymbal I.F., Chem. Heterocycl. Compd. 2011, 47, 989–995.
  35. Kawahara N., Shimamori T., Itoh T., Takayanagi H., Ogura H. Chem. Pharm. Bull. 1987, 35, 457–467. doi: 10.1248/cpb.35.457
  36. Moradi L., Piltan M., Rostami H., Abasi G. Chinese Chem. Lett. 2013, 24, 740–742. doi: 10.1016/j.cclet.2013.04.038
  37. Piltan M., Moradi L., Abasi G., Zarei S.A. Beilst.J. Org. Chem. 2013, 9, 510–515. doi: 10.3762/bjoc.9.55
  38. Medvedeva S.M., Shikhaliev K.S. J. Mater. Sci. Engineer. A. 2015, 5, 310–313. doi: 10.17265/2161-6213/2015.7-8.007
  39. Shmoylova Y.Y., Kovygin Y.A., Ledenyova I.V., Prezent M.A., Daeva E.D., Baranin S.V., Shikhaliev K.S. Mendeleev. Commun. 2021, 31, 259–261. doi 10.101 6/j.mencom.2021.03.039
  40. Chapman D.D. J. Org. Chem. 1972, 3, 2498–2502.
  41. Mondelli R., Merlini L. Tetrahedron. 1966, 22, 3253–3273.
  42. Kurasawa Y., Ishikura A., Ikeda K., Hosaka T., Matsumoto Y., Takada A. Chem. Heterocycl. Compd. 1994, 31, 233–238.
  43. Gaussian 09 Revision D.01, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian Inc. Wallingford CT 2009.
  44. Kurasawa Y., Ishikura A., Ikeda K., Hosaka T., Matsumoto Y., Takada A., Okamoto Y. J. Chem. Phys. 1998, 108, 664–675.
  45. Князев С.П., Программный комплекс Gaussian 09: методы и приближения: учебно-методическое пособие. С.П. Князев, Е.Г. Гордеев, А.Д. Кириллин, М.: МИТХТ им. М.В. Ломоносова, 2011, 62.
  46. Dunning T.H. J. Phys. Chem. A. 2000, 104, 9062–9080.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1

Baixar (173KB)
3. Scheme 2

Baixar (502KB)
4. Scheme 3

Baixar (297KB)
5. Fig. 1. Tautomeric forms of alkyl 2-(3-oxopiperazin-2-ylidene)acetates 3 (a) and 3-oxo-3,4-dihydroquinoxalin-2(1H)-ylidenemethyl acetate 4 (b)

Baixar (73KB)
6. Fig. 2. The values ​​of the atomic charges of the molecules of methyl 2-(3-oxopiperazin-2-ylidene)acetate 3a (a) and 3-oxo-3,4-dihydroquinoxalin-2(1H)-ylidenemethyl acetate 4 (b)

Baixar (384KB)
7. Fig. 3. Structure of the HOMO of methyl (3-oxopiperazin-2-ylidene)acetate 3a

Baixar (161KB)
8. Fig. 4. The structure of the HOMO of methyl (3-oxo-3,4-dihydroquinoxalin-2(1H)-ylidene)acetate 4a

Baixar (220KB)
9. Fig. 5. Structure of LUMO of N-phenylitaconimide 1a

Baixar (194KB)
10. Fig. 6. The most significant correlations in the HMBC 1H–13C spectrum of methyl 3-(1-(4-nitrophenyl)-2,5-dioxopyrrolidin-3-yl)-2-(3-oxo-3,4-dihydroquinoxalin-2-yl)propanoate 10b (a) and the alternative methyl 9-(2-((4-nitrophenyl)amino)-2-oxoethyl)-6,10-dioxo-6,8,9,10-tetrahydro-5H-pyrido[1,2-a]quinoxaline-7- carboxylate 11b (b)

Baixar (146KB)
11. Fig. 7. The values ​​of atomic charges of methyl 3-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(3-oxo-3,4,5,6-tetrahydropyrazin-2-yl)propanoate molecules int-7h (a) and methyl 3-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(3-oxo-3,4-dihydroquinoxalin-2-yl)propanoate 10h (b)

Baixar (304KB)
12. Fig. 8. The most significant correlations in the NOESY spectrum 1H–1H of ethyl 2-(2,5-dioxo-1-(p-tolyl)pyrrolidin-3-yl)-2-(3-oxo-3,4-dihydroquinoxalin-2-yl)acetate 13e

Baixar (70KB)
13. Figure

Baixar (265KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025