Determination of bacterial sensitivity to a bacteriophage by using a compact acoustic analyzer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work demonstrates for the first time the potential of a compact acoustic sensor system for assessing the impact of bacteriophages on microbial cells and assessing their bacteriophage sensitivity. It was found that using the developed system one can evaluate the activity of bacteriophages against microbial cells within 5 min without taking into account the time of cultivating microbial cells for analysis. The results obtained are promising for the further development of the acoustic sensory system in the phage therapy.

Full Text

Restricted Access

About the authors

O. I. Guliy

Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Author for correspondence.
Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

B. D. Zaitsev

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: guliy_olga@mail.ru

Saratov Branch

Russian Federation, Saratov, 410019

O. A. Karavaeva

Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

I. A. Borodina

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: guliy_olga@mail.ru

Saratov Branch

Russian Federation, Saratov, 410019

References

  1. Sulakvelidze A., Alavidze Z., Morris J.G. Jr. // Antimicrob. Agents Chemother. 2001. V. 45. № 3. P. 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
  2. Kifelew L.G., Warner M.S., Morales S., Vaughan L., Woodman R., Fitridge R. et al. // BMC Microbiol. 2020. V. 20. № 1. P. 204. https://doi.org/10.1186/s12866-020-01891-8
  3. Macdonald K.E., Stacey H.J., Harkin G., Hall L.M.L, Young M.J., Jones J.D. // PLoS ONE. 2020. V. 15. e0243947. https://doi.org/10.1371/journal.pone.0243947
  4. Chanishvili N. // Adv. Virus Res. 2012. V. 83. P. 3–40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3
  5. Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S. et al. // Clin. Microbiol. Rev. 2019. V. 32. № 4. e00031-19. https://doi.org/10.1128/CMR.00031-19
  6. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. // Front. Pharmacol. 2014. V. 5. P. 105. https://doi.org/10.3389/fphar.2014.00105
  7. Pirnay J.P., Ferry T., Resch G. // FEMS Microbiol. Rev. 2022. V. 46. № 1. https://doi.org/10.1093/femsre/fuab040
  8. Botka T., Pantůček R., Mašlaňová I., Benešík M., Petráš P., Růžičková V. et al. // Sci. Rep. 2019. V. 9. P. 5475. https://doi.org/10.1038/s41598-019-41868-w
  9. Taati Moghadam M., Amirmozafari N., Shariati A., Hallajzadeh M., Mirkalantari S., Khoshbayan A., Masjedian Jazi F. // Infect. Drug. Resist. 2020. V. 13. P. 45–61. https://doi.org/10.2147/IDR.S234353
  10. Taati Moghadam M., Khoshbayan A., Chegini Z., Farahani I., Shariati A. // Drug. Des. Devel. Ther. 2020. V. 14. P. 1867–1883. https://doi.org/10.2147/DDDT.S251171
  11. Huon J.F., Montassier E., Leroy A.G., Grégoire M., Vibet M.A., Caillon J. et al. // mSystems. 2020. V. 5. № 6. e00542-20. https://doi.org/10.1128/mSystems.00542-20
  12. Shivaram K.B., Bhatt P., Verma M.S., Clase K., Simsek H. // Science of the Total Environment. 2023. V. 901. P. 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
  13. Wang Z., Zhao X. // J. Appl. Microbiol. 2022. V. 133. № 4. P. 2137–2147. https://doi.org/10.1111/jam.15555
  14. Tang A.-Q., Yuan L., Chen C.-W., Zhang Y.-S., Yang Z.-Q. // Lwt. 2023. V. 182. P. 114774. https://doi.org/10.1016/j.lwt.2023.114774
  15. Carmody C.M., Goddard J.M., Nugen S.R. // Bioconjugate Chemistry. 2021. V. 32. № 3. P. 466–481. https://doi.org/10.9931021/acs. bioconjchem.1c00018
  16. Li T., Lu X.M., Zhang M.R., Hu K., Li Z. // Bioactive Materials. 2022. V. 11. P. 268–282. https://doi.org/10.1016/j.1130 bioactmat.2021.09.029
  17. Stone E., Campbell K., Grant I., McAulie O. // Viruses. 2019. V. 11. P. 567. https://doi.org/10.3390/v11060567
  18. Alaoui Mdarhri H., Benmessaoud R., Yacoubi H., Seffar L., Guennouni Assimi H., Hamam M. et al. // Antibiotics (Basel). 2022. V. 11. № 12. P. 1826. https://doi.org/10.3390/antibiotics11121826
  19. Soothill J.S. // Burns. 1994. V. 20. № 3. P. 209–211. https://doi.org/10.1016/0305-4179(94)90184-8
  20. Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P, Melo-Cristino J. et al. // Wound Repair Regen. 2013. V. 21. P. 595–603. https://doi.org/10.1111/wrr.12056
  21. dos Santos Ferreira N., Hayashi Sant’ Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M. et al. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 12. P. 6203–6212.22. https://doi.org/10.1099/ijsem.0.004517
  22. Guliy O.I., Zaitsev B.D., Borodina I.A., Shikhabudinov A.P., Teplykh A.A. // Appl. Biochem. Microbiol. 2017. V. 53. № 4. P. 464–469. https://doi.org/10.1134/S0003683817040068
  23. Sambrook J., Fritsch E.F., Maniatis T. Molecular Сloning: a Laboratory Manual. 2 Ed. N.Y.: Cold Spring. Maven Lab. Press, 1989. 1626 p.
  24. Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. // Nucleic Acids Res. 1991. V. 19. P. 4133–4137. https://doi.org/10.1093/nar/19.15.4133.
  25. Click E.M., Webster R.E. // J. Bacteriol. 1997. V. 179. №. 20. P. 6464–6471. https://doi.org/10.1128/jb.179.20.6464-6471.1997
  26. Click E.M., Webster R.E. // J. Bacteriol. 1998. V. 180. №. 7. P. 1723–1728. https://doi.org/10.1128/JB.180.7.1723-1728.1998
  27. Riechmann L., Holliger P. // Cell. 1997. V. 90. № 2. P. 351–360. https://doi.org/10.1016/s0092-8674(00)80342-6.
  28. Deng L.W., Malik P., Perham R.N. // Virology. 1999. V. 253. P. 271–277. https://doi.org/10.1006/viro.1998.9509
  29. Branston S.D., Stanley E.C., Ward J.M., Keshavarz-Moore E. // Biotechnol. Bioproc. Eng. 2013. V. 18. P. 560–566. https://doi.org/10.1007/s12257-012-0776-9
  30. Moghimian P., Srot V., Pichon B.P., Facey S.J., van Aken P.A. // JBNB. 2016. V. 7. № 2. P. 72–77. https://doi.org/10.4236/jbnb.2016.72009
  31. Salivar W.O., Tzagoloff H., Pratt D. // Virology. 1964. V. 24. P. 359–371. https://doi.org/10.1016/0042-6822(64)90173-4
  32. Seo H., Cho S., Vo T.T.B., Lee A., Cho S., Kang S. et al. // Microbiol Spectr. 2023. V. 11. e01446-23. https://doi.org/10.1128/spectrum.01446-23
  33. Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https://doi.org/10.1016/0076-6879(93)17065-d
  34. Zaitsev B.D., Borodina I.A., Teplykh A.A. // Ultrasonics. 2022. V. 126. P. 106814. https://doi.org/10.1016/j.ultras.2022.106814
  35. Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik G.I. // Pol J Microbiol. 2010. V. 59. № 3. P. 145–155.
  36. Fraser J.S., Maxwell K.L., Davidson A.R. // J. Mol. Biol. 2006. V. 359. P. 496–507. https://doi.org/10.1016/j.jmb.2006.03.043
  37. Fraser J.S., Maxwell K.L., Davidson A.R. // Curr. Opin. Microbiol. 2007. V. 10. P. 382–387. https://doi.org/10.1016/j.mib.2007.05.018
  38. Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
  39. Defilippis V.R., Villarreal L.P. // Introduction to the Evolutionary Ecology of Viruses. Viral Ecology. 2000. Р. 125–208. https://doi.org/10.1016/B978-012362675-2/50005-7
  40. Strathdee S.A., Hatfull G.F., Mutalik V.K., Schooley R.T. // Cell. 2023. V. 186. № 1. P. 17–31. https://doi.org/10.1016/j.cell.2022.11.017
  41. Grabowski Ł., Łepek K., Stasiłojć M., Kosznik-Kwaśnicka K., Zdrojewska K., Maciąg-Dorszyńska M. et al. // Microbiol Res. 2021. V. 248. P. 126746. https://doi.org/10.1016/j.micres.2021.126746.
  42. Suh G.A., Patel R. // Clin. Microbiol. Infect. 2023. V. 29. № 6. P. 710-713. https://doi.org/10.1016/j.cmi.2023.02.006.
  43. Daubie V., Chalhoub H., Blasdel B., Dahma H., Merabishvili M., Glonti T. et al. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1000721. https://doi.org/10.3389/fcimb.2022.1000721
  44. Patpatia S., Schaedig E., Dirks A., Paasonen L., Skurnik M., Kiljunen S. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1032052. https://doi.org/10.3389/fcimb.2022.1032052
  45. Perlemoine P., Marcoux P.R., Picard E., Hadji E., Zelsmann M., Mugnier G. et al. // PLoS ONE 2021. V. 16. № 3. e0248917. https://doi.org/10.1371/journal.pone.0248917

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a compact acoustic analyzer combined with a personal computer (a); diagram of an acoustic liquid sensor based on a resonator with a transverse electric field (b).

Download (226KB)
3. Fig. 2. General scheme of the experiment.

Download (238KB)
4. Fig. 3. Frequency dependences of the electrical impedance modulus of the acoustic analyzer before, curve 1, and after, curve 2, adding the bacteriophage M13K07 to E. coli cells at different temperatures of exposure to microbial cells: 30 (a); 50 (b); 100°C (c).

Download (190KB)
5. Fig. 4. Dependence of the change in the electrical impedance modulus (ΔZ) on the temperature of exposure to a suspension of E. coli microbial cells at a frequency of 6.6 MHz.

Download (55KB)
6. Fig. 5. Frequency dependences of the electrical impedance modulus of the acoustic analyzer with a suspension of Sp 245 microbial cells before (curve 1) and after (curve 2) the addition of bacteriophage M13K07.

Download (67KB)

Copyright (c) 2025 Russian Academy of Sciences