Respiratory activity and biosynthesis of alkaloids by the fungus Penicillium citrinum Thom

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The fungus Penicillium citrinum VKM F-4043D isolated from ancient permafrost deposits in the Arctic is an active producer of quinoline alkaloids (quinocitrinines A and B) and clavine ergot alkaloids (agroclavine-I and epoxyagroclavine-I). During fungal growth in a medium with two non-fermentable substrates — succinate and mannitol, the dynamics of respiratory activity was studied. Oxygen consumption by cells was shown to be associated with the dynamics of two-phase synthesis of biomass and alkaloids, the maximum respiratory activity had been coincided with the maximum rates of alkaloid synthesis and biomass accumulation. As shown by inhibitory analysis of fungal respiration, along with the main, cytochrome, respiratory chain, an alternative, cyanide-resistant, electron transfer pathway functions, which is suppressed by benzhydroxamic acid. It has been shown that the fungus P. citrinum is capable of growing in the presence of antimycin A, an inhibitor of electron transfer in the cytochrome region of the respiratory chain. In this case, the alternative oxidase functions as the only terminal oxidase capable of supporting fungal growth and alkaloid biosynthesis. When glucose was used as a growth substrate, biosynthesis of both alkaloids and cyanide-resistant oxidase was not observed.

Texto integral

Acesso é fechado

Sobre autores

А. Arinbasarova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, Pushchino, 142290

T. Antipova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, Pushchino, 142290

V. Zhelifonova

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, Pushchino, 142290

A. Medentsev

FRC Pushchino Centre for Biological Research, Russian Academy of Sciences

Email: aarin@rambler.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, Pushchino, 142290

Bibliografia

  1. Chen W.H., Song M.M., Pang X.Y., Tian X.P., Wang F.Z., Liu Y.H., Wang J.F. // Nat. Prod. Res. 2023. V. 37. № 3. P. 389–396.
  2. Kozlovsky A.G., Kochkina G.A., Zhelifonova V.P., Antipova Т.V., Ivanushkina N.E., Ozerskaya S.M. // Folia Microbiol. 2020. V. 65. P. 95–102.
  3. Frisvad J.C., Smedsgaard J., Larsen T.O., Samson R.A. // Studies in Mycology. 2004. V. 49. P. 201–241.
  4. Козловский А.Г., Антипова Т.В., Желифонова В.П. // Прикл. биохимия и микроб. 2015. Т. 51. № 2. С. 236–241.
  5. Pang X., Lin X., Zhou X., Yang B., Tian X., Wang J., Xu Sh., Liu Y. // Fitoterapia. 2020. V. 140. P. 104406.
  6. Jian J.Y., Fan Y.M., Liu Q., Jin J., Yuan C.M., Gu W. et al. // Chem Biodivers. 2023. V. 20. № 2. P. e202201097.
  7. Khan M.S., Gao J., Zhang M., Xue J., Zhang X. // PLoS One. 2022. V. 17. № 6. P. e0269640.
  8. da Silva M.F.d.G.F., Fernandes J.B., Forim M.R., Vieira P.C., de Sá I.C.G. Natural Products. / Ed. K. Ramawat, J.M. Mérillon, JM. Berlin, Heidelberg: Springer, 2013. P. 715–859.
  9. Thawabteh A., Juma S., Bader M., Karaman D., Scrano L., Bufo S.A., Karaman R. // Toxins. 2019. V. 11. № 11. P. 656.
  10. Takahashi S., Kakinuma N., Iwai H., Yanagisawa T., Nagai K., Suzuki K. et al. // J. Antibiot. (Tokyo). 2000. V. 53. № 11. P. 1252–1256.
  11. Shahid M.G., Nadeem M., Gulzar A., Saleem M., Rehman H.U., Ghafoor G.Z. et al. // Toxins. 2020. V. 12. № 7. P. 427. https://doi.org/10.3390/toxins12070427
  12. Козловский А.Г., Желифонова В.П., Аданин В.М., Озерская С.М., Кочкина Г.А., Грефе У. // Микробиология. 2003. Т. 72. № 6. С. 816–821.
  13. Kozlovsky A.G., Zhelifonova V.P., Antipova T.V., Adanin V.M., Ozerskaya S.M., Kochkina G.A. et al. // J. Antibiot (Tokyo). 2003. V. 56. № 5. P. 488–491.
  14. Патент РФ 2010. № 2386692.
  15. Аринбасарова А.Ю. Меденцев А.Г., Козловский А.Г. // Прикл. биохимия и микроб. 2007. Т. 43. № 6. С. 701–704.
  16. Акименко В.К., Козловский А.Г., Меденцев А.Г., Головченко Н.П., Аринбасаров М.У. // Биохимия. 1976. T. 41. № 12. P. 2220–2227.
  17. Меденцев А.Г., Аринбасарова А.Ю., Акименко В.К. // Биохимия. 1999. T. 64. C. 1457–1472.
  18. Козловский А.Г., Желифонова В.П., Антипова Т.В., Зеленкова Н.Ф. // Прикл. биохимия и микробиология. 2010. Т. 46. № 5. С. 572–576.
  19. Перт С.Д. Основы культивирования микроорганизмов и клеток. М.: Мир, 1978. 331 c.
  20. Козловский А.Г., Желифонова В.П., Антипова Т.В. // Прикл. биохимия и микроб. 2013. Т. 49. № 1. С. 5–16.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the respiratory chain of fungi, yeast and plants [16]. Cyanidin-resistant alternative oxidase branches off from the main respiratory chain at the level of ubiquinone (coenzyme Q), is activated by AMP and inhibited by benzhydroxamic acid (BHA).

Baixar (190KB)
3. Fig. 2. Biosynthesis of metabolites (a) and respiratory activity (b) during growth of the fungus P. citrinum in a medium containing succinate and mannitol. (a): 1 — biomass (g/l); 2 — ergot alkaloids (mg/l); 3 — quinocitrinins (mg/l). (b): 1 — oxygen consumption in the absence of inhibitors; 2 — oxygen consumption in the presence of 1 mM KCN (the maximum possible activity of alternative oxidase); 3 — real activity of alternative oxidase; 4 — respiration in the presence of 1 mM KCN and 5 mM BHC.

Baixar (150KB)
4. Fig. 3. Biosynthesis of metabolites (a) and respiratory activity (b) during growth of the fungus P. citrinum in the presence of antimycin A (10 μM). (a): 1 – biomass (g/l); 2 – ergot alkaloids (mg/l); 3 – quinocitrinins (mg/l); (b): 1 – oxygen consumption in the presence of antimycin A; 2 – oxygen consumption in the presence of antimycin A and 5 mM BHA.

Baixar (133KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025